Lake Okareka and Tikitapu Fish Health Monitoring 2006

Michael Landman and
Nicholas Ling

13 December 2006

The opinions provided in the Report have been prepared for the Client and its specified purposes. Accordingly, any person other than the Client, uses the information in this report entirely at its own risk.

The Report has been provided in good faith and on the basis that every endeavour has been made to be accurate and not misleading and to exercise reasonable care, skill and judgment in providing such opinions. Neither Scion nor any of its employees, contractors, agents or other persons acting on its behalf or under its control accept any responsibility or liability in respect of any opinion provided in this Report By Scion

LAKE OKAREKA AND TIKITAPU FISH HEALTH MONITORING 2006

EXECUTIVE SUMMARY

Phoslock ${ }^{T M}$ is a lanthanum-amended bentonite clay product that can remove dissolved phosphorus from the water column and cap sediments to reduce phosphate release. Large-scale applications of Phoslock $^{\text {TM }}$ have been carried out in 2005 and 2006 as part of the Lake Okareka management plan. Fish health monitoring in Lake Okareka following the 2005 Phoslock $^{\text {TM }}$ application identified concerning changes in fish health but these could not be directly attributed to Phoslock ${ }^{\text {TM }}$ exposure. This study was undertaken to examine fish health following the 2006 application and included an additional benthic species (koura) and a control lake (Tikitapu) for comparative purposes to delineate seasonal or lake-specific changes in fish health.

Results indicated that trout and koura in Lake Okareka accumulated greater bioavailable lanthanum following Phoslock ${ }^{\text {TM }}$ application but concentrations of this element were very low in their flesh and consumption of these species poses minimal or no significant risk to human health. Significant changes in some physiological parameters between lakes and over time (pre- and postPhoslock ${ }^{\text {TM }}$ application) are primarily attributable to differences in reproductive timing of fish in both lakes and differences in the mean size of bullies and koura in each lake. The significant deterioration in fish health observed during the 2005 post-application monitoring period was not repeated in 2006.

TABLE OF CONTENTS

Executive Summary 3
Table of Contents 4
1.0 Introduction 5
2.0 Methods 7
2.1 Fish collection 7
2.2 Necropsy 8
2.3 Haematology 9
2.4 Histology 10
2.5 Tissue metals analysis 11
2.5.1 Trout lanthanum 11
2.5.2 Koura metal suite 11
2.6 Statistical methods 11
3.0 Results and Discussion 13
3.1 Physiology 13
3.2 Haematology 22
3.3 Histology 25
3.4 Tissue metals 30
4.0 Conclusions 34
5.0 Acknowledgements 35
6.0 References 36
Appendix 1 Trout liver lanthanum reports 39
Appendix 2 Trout flesh lanthanum report. 46
Appendix 3 Koura tissue metals results 50

1.0 INTRODUCTION

In the Lake Okareka Catchment Management Plan (2003), methods were proposed to reduce nitrogen and phosphorus levels in Lake Okareka. Several interim remediation options were proposed until other solutions such as sewage reticulation, modifications to land use and wetland renovation could be enacted. Objections to the hyperlimnetic discharge lead to an alternative intermediate in situ treatment option. In 2005, the first of three annual nutrient adsorbing mineral applications was performed on Lake Okareka. The intention of the mineral applications was to reduce phosphorus load by 0.1 tonnes per year.

Phoslock ${ }^{T M}$ is a lanthanum-amended bentonite clay product that can remove dissolved phosphorus from the water column and can be used to form a reactive capping layer to intercept nutrients released from sediments (Haghseresht 2004). Large-scale Phoslock ${ }^{\text {TM }}$ applications have been performed in Western Australia on the Swan and Canning Rivers (Douglas et al. 1999; Robb et al. 2003) and now in New Zealand on Lake Okareka (McIntosh 2006).

Laboratory and field monitoring studies (Stauber and Binet 2000; Martin and Hickey 2004) have shown that Phoslock ${ }^{\text {TM }}$ poses little risk to algae, cladocera and fish. Although the lanthanum ingredient may be potentially toxic to fish and aquatic invertebrates, studies on this product suggest that the lanthanum element is strongly bound to the bentonite and is of little toxicological risk in the environment (Haghseresht 2004). During the 2005 Okareka fish health monitoring (Landman et al. 2006a), changes in haematology and gill histopathology indicated a potential decline in fish health after the Phoslock ${ }^{\text {TM }}$ application. However, the cause of this fish health change could not be resolved.

A supplementary health assessment of Lakes Okareka and Tikitapu (Blue Lake) rainbow trout (Oncorhynchus mykiss) was completed in April 2006
(Landman et al. 2006b). During the second evaluation period, Lake Okareka trout health was found to have improved over the period from October 2005 to April 2006. In general, trout from both lakes were in good health, and presented similar haematological profiles and gill histopathology.

The current study is a continuation of the Lake Okareka fish health monitoring program initiated in 2005, primarily examining the 2006 mineral application. In this study, rainbow trout, common bully (Gobiomorphus cotidianus) and koura (Paranephrops planifrons) were investigated in Lake Okareka. The adoption of nearby Lake Tikitapu as a reference site was done for comparative purposes to help discriminate potential seasonal and mineral exposure effects on fish health.

2.0 METHODS

2.1 Fish collection

Twenty tonnes of Phoslock ${ }^{\text {TM }}$ was applied to Lake Okareka in June 2006. This was approximately two months earlier than the previous year. Fish capture and sampling was timed around the 2006 application. Sampling of fish from Lakes Okareka and Tikitapu (Blue Lake) was conducted over three periods; one period prior to the mineral application and two periods after application.

Pre-mineral application rainbow trout (Oncorhynchus mykiss) sampling was performed in April as part of the trout baseline/recovery study (Landman et al. 2006b). Common bully (Gobiomorphus cotidianus) and koura (Paranephrops planifrons) were not collected during the April trout health assessment. Premineral application bully and koura collections were performed in the week (12-17 June) prior to the mineral application. All species were then collected at approximately two weeks (15-16 July 2006) and two months (11-15 September) post-mineral application.

Rainbow trout were captured using six gill nets set around each lake during daylight hours (Fig. 1). Nets were checked hourly by working the length of the net and removing all fish immediately. Common bully were captured using approximately 30 Gee-minnow traps set in $5-15 \mathrm{~m}$ of water. Minnow traps were set late in the afternoon, left over-night and checked the following morning. Where insufficient numbers were obtained, traps were removed and reset in another location. Koura were collected by Aquatek (Tauranga, NZ) and Waikato University (Hamilton, NZ) SCUBA divers.

Fig. 1. Nick Ling (left) and Jeroen Brys (right) setting a gill net by boat on Lake Tikitapu (Blue Lake).

2.2 Necropsy

Rainbow trout were sampled on shore within 10 min of removal from the nets. A 4-5 mL sample of blood was taken by caudal venipuncture (Fig. 2) using heparinised syringes and stored on ice until processing. Fish were sacrificed by a blow to the head prior to being weighed, measured and necropsied. The liver, gonad and spleen were removed and weighed. Whole livers were placed in Whirlpack storage bags and stored on ice until they could be frozen at $20^{\circ} \mathrm{C}$ for lanthanum analysis. Subsamples of gill and spleen tissues were removed, placed in histocasettes and fixed in 10\% neutral buffered formalin. Trout heads were removed, numbered and stored at $-20^{\circ} \mathrm{C}$ for later sampling. Common bullies were immediately transported back to the laboratory after capture. Fish were first anaesthetised with MS-222 ($0.1 \mathrm{~g} \mathrm{~L}^{-1}$). Approximately 20-100 $\mu \mathrm{L}$ of blood was taken by caudal venipuncture using heparinised syringes and processed immediately. Fish were sacrificed by an overdose of
anaesthetic, then weighed and measured. Liver and gonads were removed and weighed. Koura were chilled in an ice slurry for 30 min before being weighed and measured for total length. Hepatopancreas (digestive gland) and tail muscle tissue were removed and frozen at $-20^{\circ} \mathrm{C}$ for metals analysis.

2.3 Haematology

Haematological assessments were performed on trout and bully blood. Haematocrit (Hct; packed red cell volume) was determined by the microcapillary method. Two microlitres of whole blood was added to 1 mL of Drabkin's solution and whole blood haemoglobin determined spectrophotometrically at 540 nm . Total red blood cell counts (RBCCs) were made by adding $10 \mu \mathrm{~L}$ of whole blood to 4 mL of Isotonll solution (Beckman Coulter) in Truecount tubes (BD Biosciences) and measured with a Becton Dickinson FACSVantage flow cytometer. Two microlitres of whole blood was mixed with $98 \mu \mathrm{~L}$ of red cell diluting fluid and stored on ice for manual count validation. Manual RBCCs were made using images of RBCs on a haemocytometer captured at $100 \times$ magnification using an AxioCam HRC camera and a Zeiss Axioplan 2 light microscope. ImagePro Plus® software (Media Cybernetics Inc., Silver Springs, MD) was used to count cells after enhancement and filtering of images. Haematometric indices; mean cell volume (MCV), mean cell haemoglobin (MCH) and mean cell haemoglobin concentration (MCHC) were all calculated. All haematology was performed according to standard methods (Wintrobe 1934; Dacie and Lewis 1991).

Fig. 2. Nick withdrawing a rainbow trout blood sample by caudal venipuncture.

2.4 Histology

Preserved gill and spleen samples were processed at Gribbles Animal Pathology Laboratory (Hamilton, NZ). Gill tissue samples were first decalcified in dilute formic acid for 1 h . Approximately $5 \mu \mathrm{~m}$ sections of gill and spleen tissue were mounted on slides and stained with hematoxylin-eosin. Gill tissue slides were scanned at low magnification (50 x) to examine and estimate the distribution of large or severe lesions. Up to 20 fields of view were examined at 200-400 x magnification for finer cellular detail. Lesions were identified according to Mallat (1985) and ranked on a scale of 0-3, corresponding to none, low, moderate or severe frequency. Digital spleen images of 10 microscope fields were taken at 100 x magnification using an AxioCam HRC camera and a Zeiss Axioplan 2 light microscope. Melano-macrophage centres (MMCs) in spleen tissue were measured using ImagePro Plus® software (Media Cybernetics Inc., Silver Springs, MD) by filtering out non-pigmented,
darkly stained material and MMCs less than three cells in size. Total MMC area was expressed as a percentage of the total area of spleen tissue examined.

2.5 Tissue metals analysis

2.5.1 Trout lanthanum

Frozen rainbow trout liver and flesh tissue samples were sent to RJ Hill Laboratories (Hamilton, NZ) for the determination of lanthanum. Samples were subjected to a nitric/hydrochloric acid digestion and lanthanum determined by inductively coupled plasma mass spectrometry (ICP-MS).

2.5.2 Koura metal suite

A suite of metals were measured in koura hepatopancreas and muscle tissue samples based on USEPA (1987) methods. Brielfly, hepatopancreas and muscle tissue samples were digested using tetramethylammonium hydroxide, heat and mixing. The colloidal suspension was then partially oxidized by the addition of hydrogen peroxide and metals solubilized by acidification with nitric acid and heating. Samples were diluted and filtered prior to analysis by ICPMS (Department of Chemistry, Waikato University, Hamilton, NZ).

2.6 Statistical methods

Body weight (condition factor), liver, gonad and spleen size data were analysed using analysis of covariance (ANCOVA) on base-10 logarithmically transformed variables, with body size (length or weight) as the covariate. Tissue metals analysis was also performed by ANCOVA using weight and length as separate covariates to control for effects of fish size. Haematology data were analysed by analysis of variance (ANOVA). Significant differences were further defined using Tukey's post-hoc test. Because differential white
cell counts were measured as proportions of various cell types, data were arcsine transformed (Sokal and Rohlf 1973) prior to analysis.

Although statistical comparisons using ANCOVA were completed on body, liver, gonad and spleen weights, data are presented as somatic indices for greater ease of comparison. Gonado-somatic index (GSI) was calculated from gonad weight and body weight as [gonad weight / (body weight - gonad weight)] x 100. Liver- and spleen-somatic indices (LSI and SSI) were calculated in the same manner, substituting gonad weight for the other organs. Fulton's condition factor (K) was calculated as [(body weight - organ weights) /length ${ }^{3}$] $\times 100$.

All statistical analyses were performed using STATISTICA v6.1 software. The critical level of statistical significance for all tests was $\alpha=0.05$.

3.0 RESULTS AND DISCUSSION

Over the 2006 fish health monitoring period, rainbow trout, common bully and koura were captured from Lakes Okareka and Tikitapu. Time of year (season) influenced both fishing effort and sex ratios of rainbow trout. Trout capture was generally more difficult during April and September. Coinciding with spawning season, trout were presumably more active in the July period when fishing was easiest. A male bias was observed in both lakes that was most obvious in September when only 3 out of 18 trout captured in Okareka and none out of 20 in Tikitapu were female. Common bully and koura were relatively abundant in Lake Okareka, and while present in Tikitapu, approximately twice the effort (i.e. $2 x$ fishing days) was required to obtain the appropriate sample sizes for these species.

3.1 Physiology

General physiological parameters have been summarized and tabulated for ease of comparison in Tables 1-3. Weight and length ranges of male and female koura in Okareka were consistent over the monitoring period. More varied size ranges were obtained for Tikitapu koura and these were generally smaller and lighter per unit length.

Somatic growth and energy storage in fish species can be measured in terms of weight, length, condition (weight per unit length) and liver size. Condition and liver somatic index are expected to be influenced by seasonal changes in temperature, food availability, photoperiod and reproduction. In the current study, fish condition was generally consistent in both fish species across the three sampling periods (Fig. 3), apart from female common bully. Female condition increased over the three sampling periods, except in Tikitapu females where reduced condition was measured in September.

Table 1. Mean (SEM, n) of size and somatic indices in male and female rainbow trout. Asterisks indicate significant difference ($p<$ 0.05) in overall ANCOVA factors for lake and sampling period. Statistical interactions are between lake and sampling period.

	April		July		September		Hypothesis
	Okareka	Tikitapu	Okareka	Tikitapu	Okareka	Tikitapu	Lake Period
Males							
Length (mm)	$520(6,15)$	$509(9,15)$	$536(7,14)$	$493(9,11)$	$528(6,15)$	511 (7, 20)	
Weight (g)	$1458(58,15)$	$1419(85,15)$	1631 (69, 14)	1478 (74, 11)	1467 (56, 15)	1511 (81, 20)	
Condition (K)	1.01 (0.03, 15)	1.01 (0.02, 15)	1.00 (0.03, 14)	1.18 (0.09, 11)	0.97 (0.02, 15)	1.09 (0.04, 20)	
GSI	1.79 (0.32, 15)	4.04 (0.46, 15)	2.84 (0.23, 14)	2.39 (0.29, 11)	$2.03(0.18,14)$	2.23 (0.19, 20)	interaction
LSI	0.83 (0.05, 15)	0.98 (0.06, 15)	0.72 (0.02, 14)	1.01 (0.05, 10)	0.65 (0.03, 15)	0.76 (0.03, 20)	* *
SSI	0.13 (0.02, 14)	0.16 (0.02, 15)	0.15 (0.02, 14)	0.20 (0.02, 11)	0.13 (0.02, 15)	0.18 (0.02, 20)	*
Females							
Length (mm)	$488(8,9)$	493 (9, 8)	$506(9,10)$	496 (8, 9)	522 (9, 3)		
Weight (g)	1315 (42, 9)	1463 (55, 8)	1478 (92, 10)	1486 (82, 9)	1435 (135, 3)		
Condition (K)	1.06 (0.03, 9)	$1.08(0.05,8)$	$0.94(0.05,10)$	1.06 (0.03, 9)	1.00 (0.09, 3)		
GSI	5.49 (1.20, 9)	11.68 (1.41, 8)					*
LSI	1.19 (0.07, 9)	1.31 (0.07, 8)	0.56 (0.05, 10)	0.91 (0.09, 9)	0.68 (0.07, 3)		* *
SSI	0.10 (0.02, 9)	0.08 (0.01, 8)	0.06 (0.01, 9)	0.14 (0.02, 9)	0.06 (0.03, 3)		interaction

Table 2. Mean (SEM, n) of size and somatic indices in male and female common bully. Asterisks indicate significant difference ($p<$ 0.05) in overall ANCOVA factors for lake and sampling period. Statistical interactions are between lake and sampling period.

	June		July		September		Hypothesis
	Okareka	Tikitapu	Okareka	Tikitapu	Okareka	Tikitapu	Lake Period
Males							
Length (mm)	61.0 (1.57, 6)	$56.8(0.95,11)$	$71.6(3.38,12)$	60.3 (2.22, 7)	81.9 (2.80, 8)	68.6 (2.11, 14)	
Weight (g)	2.27 (0.14, 6)	1.96 (0.10, 11)	$5.08(1.11,12)$	2.43 (0.32, 7)	6.99 (0.87, 8)	3.96 (0.68, 14)	
Condition (K)	0.98 (0.03, 6)	1.03 (0.04, 11)	1.15 (0.07, 12)	1.03 (0.04, 7)	1.19 (0.04, 8)	1.09 (0.04, 14)	
GSI	0.85 (0.05, 6)	1.27 (0.32, 11)	$0.82(0.12,12)$	0.82 (0.10, 7)	0.68 (0.07, 8)	$0.82(0.16,14)$	
LSI	1.22 (0.09, 6)	$2.38(049,11)$	2.33 (0.21, 12)	3.49 (0.29, 7)	2.81 (0.22, 8)	2.66 (0.12, 14)	* *
Females							
Length (mm)	$63.2(1.42,13)$	61.6 (3.30, 9)	$68.5(2.58,10)$	62.9 (1.85, 12)	79.2 (2.79, 12)	68.7 (1.33, 6)	
Weight (g)	2.52 (0.16, 13)	2.80 (0.63, 9)	3.98 (0.60, 10)	3.03 (0.32, 12)	7.13 (0.89, 12)	3.21 (0.30, 6)	
Condition (K)	0.95 (0.02, 13)	1.03 (0.04, 9)	$1.09(0.05,10)$	1.10 (0.02, 12)	1.26 (0.10, 12)	0.90 (0.03, 6)	interaction
GSI	1.84 (0.18, 13)	1.77 (0.26, 9)	3.37 (0.36, 10)	3.35 (0.36, 12)	7.70 (1.43, 12)	5.62 (1.18, 6)	*
LSI	1.58 (0.10,13)	3.73 (0.44, 9)	2.68 (0.47, 10)	3.77 (0.16, 12)	2.41 (0.18, 12)	2.45 (0.28, 6)	interaction

Table 3. Mean (SEM, n) and range of koura weight and length data over the monitoring period.

	June		July		September	
	Okareka	Tikitapu	Okareka	Tikitapu	Okareka	Tikitapu
Males						
Weight (g)	80.1 (7.21, 6)	63.7 (13.66, 7)	61.0 (7.87, 7)	10.1 (1.75, 6)	$62.2(11.13,5)$	$14.8(3.48,8)$
	58.4-106.2	22.1-103.4	35.9-86.3	6.0-17.2	39.2-98.4	2.5-25.1
Total length (mm)	$143.2(4.25,6)$	124.6 (13.62, 7)	127.6 (4.33, 7)	$74.7(3.75,6)$	$132.2(7.74,5)$	79.5(7.97, 8)
	127-158	60-158	114-142	64-89	115-157	46-97
Females						
Weight (g)	42.6 (10.37, 3)	20.9 (3.34, 3)	55.5 (15.70, 3)	28.5 (18.46, 4)	50.5 (4.62, 5)	38.0 (11.62, 6)
	21.8-53.7	16.4-27.5	28.1-82.4	9.2-83.9	41.9-67.1	19.1-94.8
Total length (mm)	105.00 (24.01, 3)	92.67 (4.70, 3)	126.00 (12.74, 3)	96.75 (20.09, 4)	126.40 (3.50, 5)	113.17 (10.23, 6)
	57-130	87-102	103-147	75-157	116-137	89-156

Liver somatic index (LSI) was a more sensitive measure of energy storage and mobilization in both fish species given that changes in liver size were observed between sampling periods (Fig. 4). Liver somatic index was also typically greater in Tikitapu fish compared to Okareka. Decreasing trout LSI was measured from April to September, while common bully LSI generally increased from June to July then decreased in September. The changes in female bully corresponded with changes in condition. The changes in LSI are presumably linked to spawning and subsequent recovery in trout, and sexual maturation and growth of the gonads in the common bully.

The majority of trout captured during April were maturing adults in various stages of gonadal development. At this time, Tikitapu trout appeared to be slightly more advanced as only one immature fish was captured in Tikitapu compared to five immature fish in Okareka. Male gonado-somatic index differed between lakes in April but was similar by July and into September (Fig. 5A). All female trout captured were also ripe or partially spawned by July. Simultaneous, progressive development of the gonads in female common bully shows relatively synchronous reproductive timing between lakes (Fig. 5B). This was not observed in male common bully as testis sizes did not change between the sampling periods.

A complex pattern of spleen size changes were observed with distinct differences between male and female trout (Fig. 6). Male spleen somatic index (SSI) was statistically uniform in each lake population, although modestly higher in July. Opposite changes in female spleen size were shown as decreased SSI from April to July in Okareka and increased SSI in Tikitapu trout.

Fig. 3. Condition factor (weight per unit length) of A) male trout, B) female trout, C) male bully and D) female bully. Condition was consistent between lake populations at each sampling period, except for female common where reduced condition was found for Tikitapu females in September.

Fig. 4. Mean liver somatic index (LSI) of A) male trout, B) female trout, C) male bully and D) female bully. Liver size was generally greater in Tikitapu fish. Decreasing liver size was measured in male and female trout from April to September, while common bully liver size generally increased from June to July. Error bars indicate standard error of the mean.

Fig. 5. Mean gonado-somatic index (GSI) of A) male trout and B) female bully. Differences in male trout GSI were evident initially in April but not distinguishable from July to September. Simultaneous progressive increases in female bully GSI were observed from June to September. Error bars indicate standard error of the mean.

Fig. 6. Mean spleen somatic index (SSI) of A) male and B) female trout. Spleen size was slightly greater in Tikitapu males throughout the monitoring. An interaction was observed as opposite changes in female spleen size from April to July. Error bars indicate standard error of the mean.

3.2 Haematology

Changes in male and female trout haematology were observed, most notably between sampling periods rather than between lakes (Table 4). Haematocrit was the only parameter that did not change with period, site or sex. Circulating red blood cell (RBC) numbers decreased from April to July in both sexes but increased again by September in males. Opposite trends of increasing and decreasing haemoglobin in Okareka and Tikitapu males was found over the three sampling periods from April to September. No changes in haemoglobin were observed in female trout. The observation of depressed RBC numbers in male trout during spawning was unexpected. Increases in circulating RBCs have been shown to coincide with elevated androgen levels in maturing male brown trout compared to female or immature male fish (Pottinger and Pickering 1987). Similar observations have recently been made in maturing rainbow trout (van den Heuvel et al. unpublished data). Nevertheless, current haematological changes appear to be seasonal in origin as they were generally mirrored in both lake populations. Accessory haematological parameters expectedly coincided with changes in RBCs and haemoglobin concentration. In female trout, increases in MCHC, MCH and MCV also coincided with the reductions in RBC count from April to July. Similar increases in MCHC, MCH and MCV were also observed for male trout from April to July, which then generally decreased by September. Such changes are presumably compensatory, aimed at alleviating the potential negative effects of reduced RBCs or the increased energetic demands associated with spawning activity.

Different haematological trends were seen in the common bully (Table 4). Reduced haematocrit was measured in male common bully in the July sampling period that was not matched in females. Circulating RBC numbers were consistent in male bullies from June to September. Small increases in female RBC count were observed from June to September. Haemoglobin levels decreased from June to July and remained consistent through to September in male and female bullies from both lakes. Interactions between lake and sample period were observed for MCHC, MCH and MCV. General

Table 4. Mean (SEM, n) blood parameters for male and female rainbow trout. Asterisks indicate significant difference ($p<0.05$) in overall ANOVA factors for lake and sampling period. Statistical interactions are between lake and sampling period.

	April		July		September		Hypothesis
	Okareka	Tikitapu	Okareka	Tikitapu	Okareka	Tikitapu	Lake Period
Males							
Hct (\%)	42.5 (3.5, 10)	45.7 (1.8, 12)	45.2 (1.6, 9)	37.5 (1.7, 11)	45.6 (2.1, 14)	40.4 (2.2, 30)	
RBCC ($\times 10^{12}$ cells/L)	1.26 (0.09, 10)	1.30 (0.05, 12)	1.05 (0.06, 9)	0.89 (0.05, 11)	1.22 (0.04, 14)	1.13 (0.05, 20)	*
$\mathrm{Hb}(\mathrm{g} / \mathrm{L})$	92.0 (7.5, 10)	$100.5(4.6,12)$	106.9 (2.7, 9)	$93.5(4.5,11)$	$100.8(4.4,14)$	81.3 (3.7, 20)	interaction
MCH (pg/cell)	71.9 (3.9, 10)	77.8 (2.1, 12)	104.0 (4.4, 9)	109.0 (8.7, 11)	83.0 (3.0, 14)	72.0 (1.2, 20)	interaction
MCHC (g/L)	$219(7,10)$	$220(4,12)$	237 (4, 9)	$251(9,11)$	$222(5,14)$	206 (7, 20)	*
MCV (fl)	$329(16,10)$	355 (10, 12)	$438(14,9)$	$436(35,11)$	$377(16,14)$	$358(13,20)$	*
Lymphocyte (\%)	71.6 (5.2, 10)	76.8 (4.0, 12)	68.9 (4.0, 9)	52.0 (5.9, 11)	$68.7(4.8,14)$	$71.4(3.4,17)$	**
Granulocyte (\%)	12.0 (2.1, 10)	13.7 (3.5, 12)	27.7 (4.5, 9)	$45.4(5.5,11)$	21.3 (3.1, 14)	18.6 (2.3, 17)	interaction
Thrombocyte (\%)	16.4 (4.4, 10)	$9.6(1.9,12)$	3.4 (1.2, 9)	$2.6(1.4,11)$	10.0 (2.4, 14)	$9.9(2.1,17)$	*
Females							
Hct (\%)	43.1 (4.2, 7)	48.3 (1.1, 6)	44.6 (1.5, 8)	$46.4(2.6,5)$	34.0 (6.4, 3)	-	
RBCC ($\times 10^{12}$ cells/L)	1.27 (0.08, 7)	1.36 (0.06, 6)	1.12 (0.01, 8)	1.05 (0.10, 5)	1.05 (0.09, 3)	-	*
$\mathrm{Hb}(\mathrm{g} / \mathrm{L})$	$94.0(8.5,7)$	104.4 (3.6, 6)	$105.5(4.5,8)$	$113.8(5.8,5)$	87.6 (15.7, 3)	-	
MCH (pg/cell)	73.8 (5.2, 7)	77.0 (2.5, 6)	98.9 (10.4, 8)	110.0 (9.2, 5)	84.8 (18.7, 3)	-	*
MCHC (g/L)	$220(5,7)$	$217(8,6)$	$236(6,8)$	247 (11, 5)	$265(36,3)$	-	*
MCV (fl)	$338(28,7)$	$358(20,6)$	$430(61,8)$	$454(22,5)$	$321(49,3)$	-	*
Lymphocyte (\%)	$77.8(7.3,6)$	76.2 (7.0, 6)	62.4 (7.2, 8)	66.8 (11.6, 4)	86.5 (8.5, 2)	-	
Granulocyte (\%)	14.6 (3.9, 6)	12.0 (4.5, 6)	28.5 (6.1, 8)	$17.5(6.5,4)$	$2.5(2.5,2)$	-	
Thrombocyte (\%)	12.0 (4.4, 6)	11.8 (3.6, 6)	9.1 (2.0, 8)	$15.8(5.4,4)$	11.0 (6.0, 2)	-	

Table 5. Mean (SEM, n) blood parameters for male and female common bully. Asterisks indicate significant difference (p<0.05) in overall ANOVA factors for lake and sampling period. Statistical interactions are between lake and sampling period.

	June		July		September		Hypothesis	
	Okareka	Tikitapu	Okareka	Tikitapu	Okareka	Tikitapu	Lake	Period
Males								
Hct (\%)	32.6 (3.2, 6)	29.7 (2.6, 10)	24.9 (1.7, 12)	25.3 (1.8, 7)	32.1 (2.3, 8)	26.6 (1.9, 14)		*
RBCC ($\times 10^{12}$ cells/L)	1.04 (0.05, 4)	0.78 (0.06, 9)	1.16 (0.09, 7)	0.62 (0.05, 7)	1.02 (0.13, 5)	0.68 (0.07, 7)	*	
$\mathrm{Hb}(\mathrm{g} / \mathrm{L})$	$81.1(8.5,6)$	$68.2(3.6,11)$	62.6 (4.0, 12)	$52.4(2.8,7)$	$48.2(4.1,8)$	47.7 (2.0, 14)	*	*
MCH (pg/cell)	$83.1(4.4,4)$	86.3 (6.5, 9)	$60.2(6.3,7)$	$89.5(10.8,7)$	$45.5(2.8,5)$	$68.2(4.5,7)$	*	*
MCHC (g/L)	$248(10,6)$	$246(15,10)$	$260(18,12)$	$211(16,7)$	$151(9,8)$	$189(14,14)$		action
MCV (fl)	$326(27,4)$	$335(19,8)$	$209(17,7)$	423 (31, 7)	$334(24,5)$	$436(36,7)$		action
Females								
Hct (\%)	26.6 (1.4, 13)	35.2 (2.1, 9)	29.0 (2.6, 7)	28.4 (1.3, 12)	$33.2(2.3,12)$	$31.5(6.5,6)$		
RBCC ($\times 10^{12}$ cells/L)	0.85 (0.04, 12)	0.85 (0.05, 7)	0.92 (0.04, 2)	0.62 (0.02, 12)	1.19 (0.11, 6)	0.90 (0.26, 3)	*	*
$\mathrm{Hb}(\mathrm{g} / \mathrm{L})$	72.5 (3.0, 14)	79.2 (5.2, 9)	$52.4(7.8,8)$	$52.7(1.9,12)$	$51.7(2.9,12)$	$49.2(5.8,6)$		*
MCH (pg/cell)	86.8 (6.4, 12)	94.5 (8.0, 7)	$60.1(3.4,2)$	84.8 (3.0, 12)	$45.5(4.3,6)$	52.4 (3.1, 2)		*
MCHC (g/L)	$277(14,13)$	230 (17, 9)	$217(21,7)$	$189(10,12)$	$158(6,12)$	$182(30,6)$	*	*
MCV (fl)	$304(12,11)$	$398(32,7)$	225 (52, 2)	$457(19,12)$	$293(40,6)$	287 (4, 2)	inte	action

trends of decreasing MCHC and MCH coincided with lower haemoglobin levels. Similar trends in MCV changes were observed for male and female bullies. Mean red cell volumes decreased in Okareka and increased in Tikitapu in the July period. In general, RBC numbers and haemoglobin levels were slightly lower in Tikitapu bullies. The relationship between body size and respiratory demand is worthy of consideration here. Although common bully body size was variable between sample groups, Okareka bullies were up to 2fold heavier in some cases (Table 2). Thus, body size differences help to explain some of the observed differences in haematology, such as greater RBCs and haemoglobin levels in the larger Okareka fish. Similar to trout, most haematological parameters were particularly influenced by sampling period.

Changes in differential white blood cell counts of male trout were observed between the three sampling periods (Table 4). A reduced ratio of lymphocytes was found in July samples that was most pronounced in the Tikitapu males. The reductions in lymphocyte numbers also coincided with increases in granulocyte numbers and a smaller but significant decrease in thrombocytes. Female differential white cell counts did not mirror the changes in males, although a near significant increase in the proportion of granulocytes from April to July is noteworthy. The changes in differential white cell counts occurred primarily between sampling periods which were mirrored in both lake populations. Changes in humoral immune parameters have previously been demonstrated where lymphocytopenia (depression of lymphocyte numbers) was shown in sexually mature male brown trout compared to immature fish (Pickering 1986). The increased proportion of granulocytes is presumably a function of both fewer lymphocytes and also greater numbers of granulocytes.

3.3 Histology

The density of splenic melano-macrophage centres (MMCs) was significantly greater in the April samples (Fig. 7). Greater MMC area was also found in Okareka spleen samples compared to Tikitapu in the April period. Melanomacrophage centres in fish are aggregations of pigment-containing cells found primarily within the haemopoietic tissues of the spleen and kidney,
having various roles associated with iron recycling, toxin metabolism and immune function (Agius and Roberts 2003). These centres have also been linked to natural processes such as aging, starvation, nutritional imbalance and temperature stress (Wolke 1992). Recent research has shown MMCs to be useful indicators in fish of exposure to degraded environments such as hypoxia and sediment contamination (Fournie et al. 2001). Greater splenic MMC areas in both lake trout populations prior to the Phoslock ${ }^{\text {™ }}$ application implicate normal, seasonal changes in lake quality or fish physiology.

Fig. 7. Density of melanomacrophage centres (MMCs) in splenic tissue of rainbow trout. Greatest MMC densities were measured in both trout populations in the April sampling period. Differences between site were not distinguishable from July to September. Error bars indicate standard error of the mean.

It has been suggested that even in the absence of other observed effects, gill histopathology might still be a relevant early-warning monitoring tool for the health of fish populations (Lease et al. 2003). In the current study, there were no clear histopathological differences in the gills of male or female trout from either lake over the three sampling periods. Examples of several gross lesion types are presented in Fig. 8. Parasites, cysts and vascular congestion were generally uncommon. Low to moderate severity of clubbing or curling at the tips of the secondary lamellae was observed in most fish, regardless of site. Epithelial lifting was also relatively common in most gill samples, suggesting preservation or sectioning artifact. The incidence and severity of other lesions are typically low and there were no consistent signs of tissue reaction, irritation or damage.

Several changes in trout plasma ion concentrations were found over the study period (Table 6). Gills are the main extra-renal osmoregulatory organ in freshwater fish and plasma ions were measured to indicate any possible osmoregulatory disruption in Lake Okareka fish due to mineral exposure. Lanthanum is a known antagonist of calcium channels and has been shown to affect the transport of chloride and calcium ions in fish gills, binding specifically to the apical surface of chloride cells (Perry 1998). Furthermore, Eddy and Bath (1979) observed significant loss of plasma sodium and chloride in response to lanthanum exposure. The significant decline in plasma chloride in Lake Okareka fish immediately following Phoslock ${ }^{\text {TM }}$ application may be due to effects of lanthanum on gill osmoregulation, however, plasma chloride declined to comparable levels in Tikitapu fish in September indicating major seasonal changes in plasma levels of this anion that may be associated with reproductive physiology. Chloride strongly influences acid-base regulation in fish and an increased anion gap in fish has been implicated in increased mortality of fish following exhaustive exercise. However, it is not possible to conclusively ascribe the observed changes in plasma ions to Phoslock ${ }^{T M}$ exposure or to predict any adverse impact of these responses without background data on seasonal and reproductive physiology of lacustrine trout or the chronic physiological responses of fish to lanthanum exposure under controlled conditions.

\square April \square July ■ September

Fig. 8. Gill histopathology observations for rainbow trout from A) Okareka and B) Tikitapu. Frequency and severity of histolpathological lesions were ranked from $0-3$, corresponding to none (0), low (1), moderate (2) and severe (3). Data are presented as a mean score of the ranks for each lesion category.

Table 6. Mean (SEM, n) blood plasma ions for male and female rainbow trout. Asterisks indicate significant difference ($p<0.05$) in overall ANOVA factors for lake and sampling period. Statistical interactions are between lake and sampling period.

	April		July		September		Hypothesis
	Okareka	Tikitapu	Okareka	Tikitapu	Okareka	Tikitapu	Lake Period
Males							
Na^{+}(mM)	$120.2(3.2,11)$	$102.2(5.0,11)$	170.3 (4.3, 9)	$181.4(7.5,11)$	$129.2(3.9,14)$	142.1 (4.7, 20)	interaction
$\mathrm{K}^{+}(\mathrm{mM})$	1.91 (0.81, 11)	0.97 (0.30, 11)	0.29 (0.03, 9)	0.45 (0.21, 11)	0.35 (0.03, 14)	0.70 (0.25, 20)	*
$\mathrm{Cl}^{-}(\mathrm{mM})$	$131.5(4.1,11)$	$118.4(1.5,11)$	73.3 (3.1, 9)	$110.1(7.0,11)$	55.4 (3.0, 14)	51.3 (4.3, 20)	interaction
$\mathrm{Mg}^{2+}(\mathrm{mM})$	0.86 (0.08, 11)	0.73 (0.06, 11)	0.84 (0.05, 9)	$1.01(0.05,11)$	0.56 (0.03, 14)	0.69 (0.04, 20)	interaction
$\mathrm{Ca}^{2+}(\mathrm{mM})$	1.42 (0.14, 11)	$1.28(0.12,11)$	1.32 (0.06, 9)	1.52 (0.05, 11)	0.88 (0.07, 14)	0.97 (0.07, 20)	*
Females							
$\mathrm{Na}^{+}(\mathrm{mM})$	$112.2(5.1,7)$	113.3 (3.8, 6)	$170.7(5.7,8)$	$185.2(7.3,5)$	119.3 (4.8, 3)	-	*
$\mathrm{K}^{+}(\mathrm{mM})$	2.49 (1.18, 7)	1.45 (0.57, 6)	0.19 (0.03, 8)	0.18 (0.03, 5)	0.21 (0.02, 3)	-	*
$\mathrm{Cl}^{-}(\mathrm{mM})$	$124.1(4.5,7)$	$120.5(4.4,6)$	$72.4(2.8,8)$	113.0 (5.1, 5)	45.1 (7.7, 3)	-	interaction
$\mathrm{Mg}^{2+}(\mathrm{mM})$	1.02 (0.17, 7)	0.93 (0.07, 6)	0.84 (0.05, 8)	1.26 (0.12, 5)	0.48 (0.06, 3)	-	interaction
Ca^{2+} (mM)	2.03 (0.34, 7)	$2.19(0.19,6)$	1.65 (0.16, 8)	$1.82(0.15,5)$	0.73 (0.13, 3)	-	

3.4 Tissue metals

Lanthanum was not detected in trout flesh collected during the 2005 monitoring period (Landman et al. 2006a). Similarly in 2006, trout flesh lanthanum could not be detected. Concentrations slightly above the limit of detection ($0.002 \mathrm{mg} / \mathrm{kg}$) were measured in the flesh of only three out of 99 samples analysed, ranging from 0.0029-0.0095 mg/kg in these samples. The three flesh samples with detectable lanthanum were from Lake Okareka trout in July immediately after the mineral application. Although lanthanum was generally not found in trout flesh tissue, this element is known to accumulate in the internal organs and structures of fish (Hao et al. 1996). Accordingly, detectable levels of lanthanum were found in the livers of all trout captured from both lakes (Fig. 9). Significant increases in liver lanthanum concentration were measured by September in male Okareka trout compared to insignificant increases in Tikitapu. Lake and sampling period changes were observed in female trout as liver lanthanum concentration increased from April to July in both populations, although there was greater overall accumulation in the Okareka population.

Similar patterns of lanthanum accumulation were observed in koura flesh and hepatopancreas (liver equivalent) tissues (Fig. 10). Although greater tail flesh lanthanum concentrations were measured in Okareka koura, concentrations in both lake koura populations were generally low. Significant increases in hepatopancreas lanthanum concentrations were measured in Okareka koura immediately following the mineral application in July and increased further by September. A modest increase in hepatopancreas lanthanum was observed in Tikitapu koura in July, but subsequently decreased by September. In addition to lanthanum, a full suite of metals were measured in the koura tissues. Twenty four out of 30 elements measured were found at detectable levels in most tissue samples. These data have been summarized and presented in Appendix 2. With few exceptions (e.g. $\mathrm{Mg}, \mathrm{P}, \mathrm{K}, \mathrm{Cr}$ and Hg), most elements were found in greater concentrations in the hepatopancreas compared to tail flesh. Although not directly related to this particular study, analysis of this data showed contrasting changes and differences with
sampling period and lake population for a large number of elements and serves primarily to highlight the seasonal and temporal differences for other measured endpoints.

Accumulation of lanthanum in the koura tissues and trout liver reveals the presence of bioavailable lanthanum sources in both lakes. The higher lanthanum concentrations in Okareka biota demonstrates greater lanthanum bioavailability in this lake. The significant increase in koura hepatopancreas and trout liver lanthanum two weeks and two months, respectively after the Lake Okareka Phoslock ${ }^{\text {TM }}$ application implies increased lanthanum bioavailability due to greater lake levels originating from the mineral product. Although lanthanum is known to have a variety of effects such as binding to proteins, enzymes and phosphate, and competing with calcium binding sites (Das et al. 1988), there is a paucity of literature on biologically relevant lanthanum concentrations relating to chronic toxicity in aquatic organisms. Therefore, the levels found in the trout and koura cannot be linked to harmful consequences in this study and assessment of chronic exposure and mechanisms of depuration would be valuable.

 rainbow trout. Greatest lanthanum concentrations were measured in Okareka trout livers. Significant liver concentrations increases were measured from April to September in males and from April to July in females. Error bars indicate standard error of the mean.

 tail flesh tissues. Greatest lanthanum concentrations were measured in the hepatopancreas where significant increases were found in Okareka koura following the mineral application. Error bars indicate standard error of the mean.

4.0 CONCLUSIONS

During the 2005 monitoring period, changes in spleen, haematology and histopathology were observed in rainbow trout and common bully. These changes indicated a potential decline in general fish health during that monitoring period which could not be easily attributed to mineral exposure, lake quality or season. A more precautionary approach was employed in the current study. By using Tikitapu as a reference site, we were able to demonstrate seasonal changes in fish physiology that were generally mirrored in both lakes.

Although there is evidence of exposure to greater bioavailable lanthanum in Lake Okareka trout, there was no corresponding evidence of any obvious decline in the health of any species sampled following Phoslock ${ }^{\text {TM }}$ application in 2006. Most of the differences observed between lakes Okareka and Tikitapu can be attributed to temporal differences in reproductive synchrony or allometric effects related to the differences in mean size of bullies and koura in these lakes.

5.0 ACKNOWLEDGEMENTS

This study was funded by Environment Bay of Plenty. The authors thank the following organizations and people for their help during this project: Environment Bay of Plenty - John McIntosh; Waikato University - Alex Ring, Dudley Bell, Jeroen Brys, Emma Joss, Annie Barker, Steve Cameron, Gavin Reynolds, Dave West; Scion - Sean Taylor, Trevor Stuthridge, Mike van den Heuvel, Natalie Bleackley, Nicholas Shannon; Aquatek - Tony Wood.

6.0 REFERENCES

Agius C and Roberts RJ. 2003. Melano-macrophage centres and their role in fish pathology. Journal of Fish Diseases 26: 499-509.

Dacie JV and Lewis SM. 1991. Practical Haematology, Churchill Livingstone, London, England. pp. 37-85.

Das T, Sharma A and Geeta T. 1988. Effects of lanthanum in cellular systems. Biological Trace Element Research 18: 201-228.

USEPA. 1987. Determination of Metals in Fish Tissue by Inductively Coupled Plasma - Atomic Emission Spectrometry. EPA Method 200.11, Revision 1.3, April 1987.

Douglas GB, Adeney JA and Robb MS. 1999. A novel technique for reducing bioavailable phosphorus in water and sediments. International Association of Water Quality Conference on Diffuse Pollution, pp. 517-523. International Assoc. Water Quality Diffuse Pollution Conference. 16-20 May, 1999, Perth, WA.

Eddy FB and Bath RN. 1979. Effects of lanthanum on sodium and chloride fluxes in the goldfish Carassius auratus. Journal of Comparative Physiology B 129: 145-149.

Fournie JW, Summers JK, Courtney LA and Engle VD. 2001. Utility of splenic macrophage aggregates as an indicator of fish exposure to degraded environments. Journal of Aquatic Animal Health 13: 105-116.

Haghseresht F. 2004. The use of Phoslock $^{\text {TM }}$ in reducing filterable reactive phosphorus level in water bodies: an overview of the properties of Phoslock ${ }^{\text {TM }}$ and its performance in improving water quality. March 2004 report, Integrated Mineral Technology Holdings Ltd.

Hao S, Xiaorong W, Zhaozhe H, Chonghua W, Liansheng W, Lemei D, Zhong L and Yijun C. 1996. Bioconcentration and elimination of five light rare earth elements in carp (Cyprinus carpio L.). Chemosphere 33: 1475-1483.

Lake Okareka Catchment Management Action Plan. 2003. Environment Bay of Plenty Environmental Publication 2003/23.

Landman MJ, van den Heuvel MR and Stuthridge TR. 2006a. Lake Okareka Fish Health monitoring 2005. Scion Report prepared for Environment Bay of Plenty. 12 April 2006.

Landman MJ, Ling N and Stuthridge TR. 2006b. Lake Okareka and Tikitapu Fish Health Monitoring 2006: Trout Baseline Study. Scion Report prepared for Environment Bay of Plenty. 31 May 2006.

Lease HM, Hansen JA, Bergman HL and Meyer JS. 2003. Structural changes in gills of Lost River suckers exposed to elevated pH and ammonia concentrations. Comparative Biochemistry and Physiology Part C 134: 491500.

Mallat J. 1985. Fish gill structural changes induced by toxicants and other irritants, a statistical review. Canadian Journal of Fisheries and Aquatic Sciences 42: 630-648.

Martin ML and Hickey CW. 2004. Determination of HSNO ecotoxic thresholds for granular Phoslock ${ }^{\text {TM }}$ (Eureka 1 formulation) phase 1: acute toxicity. NIWA client report: HAM2004-137.

McIntosh J. 2006. Phoslock application - Lake Okareka. Environment Bay of Plenty Environmental Publication 2006/06.

Perry SF. 1998. The chloride cell: structure and function in the gills of freshwater fishes. Annual Review of Physiology 59: 325-347.

Pickering AD. 1986. Changes in blood cell composition of the brown trout, Salmo trutta L., during the spawning season. Journal of Fish Biology 29: 335347.

Pottinger TG and Pickering AD. 1987. Androgen levels and erythrocytosis in maturing brown trout, Salmo trutta L. Fish Physioly Biochemistry 3: 121-126.

Robb M, Greenop B, Goss Z, Douglas G and Adeney J. 2003. Application of Phoslock ${ }^{\text {TM }}$, an innovative phosphorus binding clay, to two Western Australian waterways: preliminary findings. Hydrobiologica 494: 237-243.

Sokal, RR, Rohlf FJ. 1973. Introduction to Biostatistics. W. H. Freeman and Company, San Francisco.

Stauber JL and Binet MT. 200. Canning River Phoslock ${ }^{\text {TM }}$ field trial Ecotoxicity testing final report; CSIRO Report ET317R.
van den Heuvel MR, Landman MJ, West DW and Finley M. 2006. Altered physiology of rainbow trout in response to modified energy intake combined with pulp and paper effluent exposure. Canadian Journal of Fisheries and Aquatic Sciences, In review

Wintrobe MM. 1934. Variations in the size and hemoglobin content of erythrocytes in the blood of various vertebrates. Folia Hematologica 51: 3249.

Wolke RE. 1992. Piscine macrophage aggregates: a review. Annual Review of Fish Diseases 2: 91-108.

APPENDIX 1 TROUT LIVER LANTHANUM REPORTS

Hill Laboratories
R / Hill Laboratories Limiled
mail@hill-labsco.nz
Internet:

Client's Reference: Fish Liver Lanthanum

The results for the analyses you requested are as follows:
Sample Type: Biological Materials, Fish/shellfish tissue

Sample Name	Lab No	Lanthanum (mgikg as rcvd)
OKT601	$416611 / 1$	0.135
OKT602	$416611 / 2$	0.094
OKT603	$416611 / 3$	0.350
OKT604	$416611 / 4$	0.381
OKT605	$416611 / 5$	0.614
OKT607	$416611 / 6$	0.343
OKT606A	$416611 / 7$	0.126
OKT608B	$416611 / 8$	0.080
OKT609	$416611 / 9$	0.158
OKT610	$416611 / 10$	1.37
OKT611	$416611 / 11$	0.208
OKT612	$416611 / 12$	0.162
OKT613	$416611 / 13$	0.133
OKT614	$416611 / 14$	0.507
OKT615	$416611 / 15$	0.103
OKT616	$416611 / 16$	0.098
OKT617	$416611 / 17$	0.340
OKT618	$416611 / 18$	0.195
OKT619	$416611 / 19$	0.225
OKT620	$416611 / 20$	0.317
OKT621	$416611 / 21$	0.402
OKT622	$416611 / 22$	0.658
OKT623	$416611 / 23$	0.243
OKT624	$416611 / 24$	0.085
BKT601	$416611 / 25$	0.046
BKT602	$416611 / 26$	0.113
BLT603		0.226
		$0.11 / 27$

Sample Name	Lab No	Lanthanum (mgikg as revd)
BLT604	$416611 / 28$	0.356
BLT605	$416611 / 29$	0.162
BLT606	$416611 / 30$	0.059
BLT607	$416611 / 31$	0.033
BLT606	$416611 / 32$	0.103
BLT609	$416611 / 33$	0.343
BLT610	$416611 / 34$	0.297
BLT611	$416611 / 35$	0.226
BLT612	$416611 / 36$	0.231
BLT613	$416611 / 37$	0.195
BLT614	$416611 / 38$	0.357
BLT615	$416611 / 39$	0.243
BLT616	$416611 / 40$	0.079
BLT617	$416611 / 41$	0.069
BLT616	$416611 / 42$	0.403
BLT619	$416611 / 43$	0.105
BLT620	$416611 / 44$	0.117
BLT621	$416611 / 45$	0.044
BLT622	$416611 / 46$	0.262
BLT623	$416611 / 47$	0.108

Summary of Methods Used and Detection Limits

The following table;s) glves a riff cescripton of he methocs u5ed to connuct the analyses for this job
The cetection Imts given Delow are those attainable in a relatively clean matrix. Detection Imits may de nigher for holvioual samples should insuticlent sample be avallable, or if the matrix requres that dilltons be performed during analyals.

Substance Type: Biological Materials

Parametar	Method Used	Detection Limit
Biologica Materiais Digest	Nitrichydrochioric asid digestion.	N/A
Lanthanum	Nirichydrochioric acid digestion. 3CP-MS determination.	$0.602 \mathrm{mg} / \mathrm{kg}$ as revo

Analyst's Comments:

These samples were collected by yourselves and analysed as received at the laboratory.
Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the submitter.

This report must not be reproduced, except in full, without the written consent of the signatory.
$\rightarrow B \rightarrow<4+$ Rennere
Roger Haslemore B.Sc., Ph.D., MNZIC
Food and Industrial Client Services Manager

No Analyst's Comments

SUMMARY OF METHODS

Test	Method Description	Dafault Detection LImit	Samples
Homogenise	Mincing, chopping, or blending of sample to form homogenous sample fraction. AOAC 17th Edition	-	1-43
Blological Materials Digestion	Nitric and hydrochloric adid micro digestion, $85^{\circ} \mathrm{C}$ for 1 hour.	\bullet	1-43
Lanthanum	Blological materials digestion, ICP-MS.	$0.0020 \mathrm{mg} / \mathrm{kg} \mathrm{as} \mathrm{revd}$	1-43

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.
Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.
7.M. hikhawoun

Malar Sritharan, BSC
Food and Blologicals Team Leader

Hill Laboratories

Client: Contact:	Scion Landman, Michael do Scion Private Bag 3020 ROTORUA		Lab No: Date Registered: Date Reported: Quote No: Order No: Client Reference: Submitted By:		801171 27-Sep-2006 25-Oct-2006 30098 PU037582 Trout Liver A Landman, Mi	
Sample Type:Liver						
	Sample Name:	5LT0644	BLTogas	SLT0646	SLT0547	BLT0648
	Lab Number:	601171.1	601171.2	601171.3	601171.4	601171.5
Lanthanum	migha 35 reva	0.33	0.39	0.38	0.53	0.48
Sample Type: Liver						
	Sample Name:	6LTC649	bltoes0	BLT0651	BLT0652	BLT0653
	Lab Number:	601171.6	601171.7	601171,8	601171.9	601171.10
Lanthanum	mg/ig 35 reva	0.41	0.25	0.30	0.37	0.20
Sample Type: Liver						
	Sample Name:	BLT0654	BLTOE55	BLTO656	SLT0657	BLT0658
	Lab Number:	601171.11	601171.12	601171.13	601171.14	601171.15
Lanthanum	mag/g as revo	0.18	0.21	0.25	0.45	0.55

Sample Type: Liver						
	Sample Name:	SLTD659	BLTO660	6LTO561	6LTD562	ELT0663
	Lab Number:	601171.16	601171.17	601171.16	601171.19	601171.20
Lanthanum	mg/kg 35 revo	0.36	0.29	0.20	0.27	0.43

Sample Type: Ifiver					
Sample Name:	OKTD649	OKTOE50	OKT065t	OKTD652	OKT0653
Lab Number:	601171.21	601171.22	601171.23	601171.24	601171.25
Lanthanum mgikg 35 revo	0.22	0.51	1.0	0.59	1.1
Sample Type: Liver					
Sample Name:	OKT0654	OKT0555	OKT0556	OKT0657	OKT0658
Lab Number:	601171.26	601171.27	60117126	60117129	60117130
Lanthanum mgikg as reva	0.81	0.37	1.5	0.42	0.69

Sample Type: Liver

Sample Name:	OKT0659	OKT0660	OKTD661	OKT0662	OKT0663
Lab Number:	601171.31	601171.32	601171.33	601171.34	601171.35
Lanthanum	mg/kg 35 revo	0.47	0.86	0.97	0.49

Sample Type: Liver

Sample Name:	OKTD664	OKT0665	OKT0666		
Lab Number:	601171.36	601171.37	601171.38		
Lanthanum	$\mathrm{mg} / \mathrm{kg}$ as rcvo	0.97	1.6	0.94	-

SUMMARY OF METHODS

Sample Type: Liver			
Test	Method Description	Default Detection Limit	Samples
Homogenise	Mincing, chopping, or blenaling of sample to form homogenous sample fraction. AOAC 17ith Eoltion	-	1-38
Biological Materlals Digestion	Nitric and hyorocniorlc acid micro digestion, $85^{\circ} \mathrm{C}$ for 1 hour. H.S. Nuand R.S. Houk. Spectrochem, Acta, part B, 1996, 51, 779.	-	1-38
Lanthanum	Blological materials oligestion, ICP-MS.	$0.0020 \mathrm{mg} / \mathrm{kg} \mathrm{as} \mathrm{rcvo}$	1-38

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.
Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client

This report must not be reproduced, except in full, without the written consent of the signatory.

1 P/Plonfanere
Roger Haslemore B.SC., PnD
Lead Qually Assurance Audtior

APPENDIX 2 TROUT FLESH LANTHANUM REPORT

					R J HIl Laboratories Limbed 1 Clyce atreet. Frivas: Eag 3205 Hamlison, New Zealard Ph: + 64 (7) 3582000 Fax: + 64 (7) 3532001 Emal: maligni-abs.corz Web: wawhll-iabe co.nz	
	1.3	i $\#$ - 0 i 1			Page 1 of 3	
Client: Contact:	Scion Landman, Michael olo Scion Private Bag 3020 ROTORUA			gistered: ported: No: o: Reference: ed By:	$\begin{aligned} & 601545 \\ & \text { 03-Nov-2006 } \\ & 24-\text { Nov-2006 } \\ & 30098 \end{aligned}$ Fish Liver Lan Landman, Mich	num
Sample Typer Fien						
	Sample Name:	OKT 0616	OKT 0617	OKT 0518	OKT 0619	OKT C620
	Lab Number:	601545.1	601545.2	601545.3	501545.4	501545.5
Lan:nsาum	mging as rcva	< 0.0020.	<0.0020	<0.0020	< 0.0320	< 0.0020
Sample Types Filsh						
	Sample Name:	OKT 0621	OKT 0622	OKT 0523	OKT 0524	OKT 0625
	Lab Number:	601545.6	601545.7	601545.8	501545.9	601545.10
Lanthanum	mgha as revd	<0.0020	<0.0020	< 0.0020	<0.0320	<0.0020
Sampla Types Fish						
	Sample Name:	OKT C626	OKT 6627	OKT 0528	OKT 0629	OKT 0630
	Lab Number:	601545.11	601545.12	601545.13	501545.14	601545.15
Lanth3num	mgakas revd	0.0053	<0.0020	0.0048	$\leqslant 0.0320$	<0.0020
Sample Type: Fish						
	Sample Name:	OKT [631	OKT 0632	OKT 0533	OKT 0534	OKT 0635
	Lab Number:	$60+545.15$	601545.17	601545.18	601545.19	601545.20
Lanthanum	mging as revd	<0.0020	<0.0020	< 0.6020	< 0.0320	<0.0020
sample Type: Fish						
	Sample Name:	OKT 0636	OKT 0637	OKCT 0338	OKT 0639	OKT [640
	Lab Number:	601545.21	601545.22	601545.23	501545.24	601545.25
Lanthanum	mgkig as revd	<0.0027	< 0.0020	< 0.0020	< 0.0320	0.0095
Sample Type: Fian						
	Sample Name:	OKT DE41	OKT 0642	OKT 0543	QKT 0544	OKT [E45
	Lab Number:	601545.25	601545.27	601545.28	501545.29	601545.30
Lantnsาum	mging as revd	< 0.0020	<0.0020	0.0029	< 0.0320	< 0.0020
Sample Types Fish						
	Sample Name:	OKT CE4E	OKT CE47	OKT 0548	OKT 0549	OKT 065t
	Lab Number:	601545.31	601545.32	601545.33	501545.34	601545.35
Lanthanum	mpapas revi	<0.0020	<0.0020	<0.0020	<0.0320	<0.0020
Sampla Typa: Fiah						
	Sampie Name:	OKT 0654	OKT 6655	OKT 0555	OKT 0657	OKT 06S8
	Lab Number:	601545.35	601545.37	601545.38	501545.39	601545.40
Lanthavum	mgikg as reva	<0.0020	<0.0020	<0.0020	< 0.0220	<0.0020
Sample Type: Flah						
	Sample Name:	OKT 0659	OKT प6ED	OKT 0361	OKT 0652	OKT 0663
	Lab Number:	601545.41	601545.42	601545.43	501545.44	601545.45
Lanthanum	mging as revd	<0.0020	<0.0020	< 0.5020	< 0.0020	<0.0020
sample Typer Fish						
	Sample Name:	OKT [665	OKT 0666	ELT 0531	BLT C602	6LT OE03
	Lab Number:	601545.45	601545.47	601545.43	501545.49	601545.50
Lanthanum mgak as revd		<0.0020	<0.0020	<0.0020	< 0.0520	< 0.0020

Sample Type: Fish					
Sample Name:	ELT 0604	BLT 0505	ELT 0505	BLT 0607	BLT 0608
Lab Number:	601545.51	601545.52	601545.53	501545.54	601545.55
Lanthanum mgikg as reva	<0.0020	<0.0020	<0.0020	<0.0320	<0.0020
Sample Type: Fish					
Sample Name:	BLT 0609	BLT 0610	ELT 0511	BLT 0612	BLT 0613
Lab Number:	601545.55	601545.57	601545.58	601545.59	601545.50
Lanthanum mgikg as reva	<0.0020	<0.0020	<0.0020	<0.0520	<0.0020
Sample Type: Fiah					
Sample Name:	BLT 0614	BLT 0615	ELT 0516	BLT 0617	ELT 0618
Lab Number:	601545.51	601545.62	601545.63	601545.64	601545.65
Lanthanum mgikg as reva	<0.0020	<0.0020	<0.0020	<0.0320	<0.0020
Sample Type: Fish					
Sample Name:	BLT 0619	BLT 0620	ELT 0521	BLT 0622	ELT 0623
Lab Number:	601545.55	601545.57	601545.68	501545.69	601545.70
Lanthanum mgikg as rcval	<0.0020	<0.0020	<0.0020	<0.0520	<0.0020
Sample Type: Fish					
Sample Name:	BLT 0624	BLT 0625	ELT 0525	BLT 0627	BLT 0628
Lab Number:	601545.71	601545.72	601545.73	601545.74	601545.75
Lanthanum mgikg as reva	<0.0020	$\leqslant 0.0020$	<0.0020	<0.0220	<0.0020
Sample Type: Fish					
Sample Name:	ELT 0630	BLT 0631	ELT 0533	BLT 0634	BLT 0635A
Lab Number:	601545.75	601545.77	601545.78	501545.79	601545.50
Lanthanum mgikg as reval	<0.0020	<0.0020	<0.0020	<0.0320	<0.0020
Sample Type: Fish					
Sample Name:	BLT 0635B	BLT 0636	ELT 0537	BLT 0638	BLT 0639
Lab Number:	601545.31	601545.32	601545.83	601545.84	601545.35
Lanthanum mgikg as rcval	<0.0020	<0.0020	<0.0020	<0.0320	<0.0020
Sample Type: Fish					
Sample Name:	BLT 0340	BLT 0541	ELT 0542	BLT 0643	BLT 0846
Lab Number:	601545.35	601545.37	601545.88	601545.89	601545.90
Lanthanum mgikg as reval	<0.0020	<0.0020	<0.0020	<0.0520	<0.0020
Sample Type: Fish					
Sample Name:	BLT 0652	BLT 0653	BLK 0654	SLK 0656	BLK 0557
Lab Number:	601545.91	601545.92	601545.93	501545.94	601545.95
Lanthanum mpakgas reva	<0.0020	<0.0020	<0.0020	<0.0220	<0.0020
Sample Type: Fish					
Sample Name:	OKT 0658	OKT 0659	OKT 0561	OKT 0652	
Lab Number:	601545.95	601545.97	601545.98	601545.99	
Lanthanum mgikg as reva	<0.0020	<0.0020	<0.0020	<0.0320	\cdot
No Analyst's Comments					

SUMMARY OF METHODS

Sample Typex Figh			
Test	Methed Deceription	Defautt Deteotion Limit	2amplec
Homogenise	Mincing, chopping, or biending of sample to form nomogenous sample fraction. AOAC 17:t Exition	-	1-99
Elologicas Materials Dipeason	Nitric and hydrochionic acid micro dgestion, $95^{\circ} \mathrm{C}$ for 1 nour.	-	$1-99$
Lamanum	Slaiogica maserias digeston, ice-ma.	0.0020 mghkg as reva	1.99

These samples were colected by yourselves (or your agent) and analysed as recelved at the laboratory.
Samples are heid at the laboratory after reporting for a length of time depending on the preservation used and the stablity of the analytes beling tested. Once the storage period is completed the samples are discarded unless otherwise advised by the clent.

This report must not be reproduced, except in full, without the writien consent of the signatory.

ank Bryant, NzCS (Chenstry
Senlor Technocglat-Embronmental irorgsnics

APPENDIX 3 KOURA TISSUE METALS RESULTS

Table 1a. Koura hepatopancreas metals suite. Metal data are presented as mean \pm sem ($\mathrm{mg} / \mathrm{kg}$) tissue concentrations for each sampling period and lake.

Lake	Period	n	B 10	Na 23	Mg 24	Al 27	P 31	K 39	Ca 43	V 51	Cr 53	Fe 54	Mn 55	Co 59
Okareka	June	10	0.74	1867	182	2.60	1828	2293	236	0.48	0.17	57.0	85.3	0.82
			0.16	87	21	0.79	138	145	11	0.01	0.01	11.6	18.2	0.12
	July	10	2.79	1806	258	1.70	2032	2498	269	0.53	0.19	77.1	202.5	0.78
			0.81	104	29	0.30	125	142	25	0.02	0.01	14.1	53.5	0.13
	Sept	10	2.79	1679	276	3.13	2084	2492	228	0.51	0.17	107.5	257.1	0.86
			0.80	170	32	0.74	164	203	24	0.03	0.02	29.8	49.4	0.17
Tikitapu	June	10	1.60	2040	200	4.77	1767	2648	218	0.11	0.19	44.2	22.0	0.45
			0.45	179	16	1.47	120	136	15	0.04	0.04	11.1	4.0	0.04
	July	10	5.24	2320	244	8.87	2250	2576	359	0.06	0.10	45.4	32.5	0.37
			1.29	113	24	1.80	142	165	44	0.04	0.03	6.8	7.1	0.04
	Sept	14	2.81	1557	215	10.09	2388	3095	179	0.19	0.35	74.1	66.3	0.67
			0.39	78	13	1.26	125	94	12	0.04	0.05	10.1	14.8	0.08

Table 1b. Koura hepatopancreas metals suite continued.

Lake	Period	n	Cu 63	Zn 68	As 75	Se 82	Sr 88	Ag 109	Cd 111	Ba 137	La 139	Hg 202	TI 205	Pb 206
Okareka	June	10	379.2	155.9	2.06	1.01	2.74	0.69	0.63	2.67	0.17	2.22	0.003	0.018
			85.1	24.0	0.19	0.06	0.33	0.09	0.10	0.65	0.04	0.57	0.001	0.003
	July	10	211.3	100.3	3.18	0.94	6.15	0.63	0.65	9.01	0.54	2.04	0.006	0.014
			51.3	10.0	0.52	0.12	1.39	0.10	0.09	2.61	0.13	0.29	0.001	0.003
	Sept	10	212.5	139.5	3.42	0.94	5.50	0.53	0.55	11.32	0.93	2.22	0.010	0.022
			78.1	28.4	0.80	0.09	1.31	0.15	0.11	3.03	0.17	0.16	0.002	0.005
Tikitapu	June	10	169.5	114.9	0.79	1.29	3.80	0.13	0.56	3.79	0.11	0.65	0.038	0.152
			48.8	20.5	0.08	0.09	0.67	0.03	0.11	0.86	0.02	0.30	0.003	0.028
	July	10	80.8	98.0	1.07	1.37	10.23	0.09	0.79	10.59	0.24	0.01	0.053	0.383
			20.7	26.6	0.16	0.11	2.53	0.02	0.16	2.87	0.07	0.01	0.004	0.088
	Sept	14	55.5	74.1	1.09	1.28	4.19	0.08	0.83	7.44	0.08	0.10	0.070	0.243
			20.8	10.2	0.10	0.09	0.56	0.02	0.11	0.94	0.01	0.08	0.006	0.048

Table 2a. Koura tail flesh metals suite. Metal data are presented as mean \pm sem ($\mathrm{mg} / \mathrm{kg}$) tissue concentrations for each sampling period and lake.

Lake	Period	n	B 10	Na 23	Mg 24	Al 27	P 31	K 39	Ca 43	V 51	Cr 53	Fe 54	Mn 55	Co 59
Okareka	June	10	0.04	1065	203	0.65	2229	3000	136	0.26	0.27	1.36	1.48	0.01
			0.02	96	9	0.15	100	170	21	0.02	0.01	0.20	0.20	0.00
	July	10	0.03	1041	227	0.44	2534	3590	116	0.32	0.25	1.26	4.18	0.01
			0.01	59	9	0.07	95	173	9	0.01	0.00	0.15	1.95	0.00
	Sept	10	0.03	1068	225	0.67	2553	3349	152	0.34	0.25	1.55	2.65	0.01
			0.00	61	12	0.12	97	141	16	0.01	0.00	0.25	1.12	0.00
Tikitapu	June	10	0.07	1015	272	0.31	2623	3806	102	0.17	0.28	1.15	0.49	0.02
			0.02	77	8	0.14	54	90	4	0.05	0.07	0.29	0.05	0.00
	July	10	0.11	1297	283	0.95	2526	3610	159	0.17	0.43	1.66	0.75	0.02
			0.03	101	10	0.22	93	106	22	0.04	0.02	0.12	0.12	0.00
	Sept	14	0.08	941	266	2.59	2713	3491	122	0.25	0.38	2.50	0.90	0.02
			0.03	37	9	0.91	67	84	9	0.03	0.04	0.59	0.13	0.00

Table 2b. Koura tail flesh metals suite continued.

Site	Period	n	Cu 63	Zn 68	As 75	Se 82	Sr 88	Ag 109	Cd 111	Ba 137	La 139	Hg 202	TI 205	Pb 206
Okareka	June	10	2.87	16.0	0.36	0.12	0.44	0.009	0.002	0.13	0.06	3.78	0.001	0.004
			0.56	1.2	0.02	0.01	0.07	0.002	0.000	0.02	0.02	0.52	0.000	0.001
	July	10	4.44	15.7	0.93	0.12	0.45	0.015	0.002	0.21	0.07	4.76	0.002	0.002
			0.67	0.6	0.25	0.00	0.05	0.003	0.000	0.05	0.02	0.81	0.000	0.000
	Sept	10	4.46	17.1	0.63	0.12	0.56	0.014	0.001	0.30	0.09	6.30	0.004	0.002
			0.93	1.5	0.07	0.00	0.09	0.004	0.000	0.07	0.02	0.79	0.001	0.000
Tikitapu	June	10	4.89	14.9	0.16	0.26	0.36	0.004	0.003	0.13	0.03	0.73	0.008	0.040
			0.46	1.0	0.01	0.01	0.01	0.001	0.001	0.02	0.01	0.21	0.001	0.025
	July	10	5.40	12.9	0.22	0.24	0.68	0.005	0.008	0.31	0.02	0.05	0.009	0.017
			0.80	0.6	0.03	0.03	0.13	0.001	0.002	0.05	0.00	0.05	0.001	0.004
	Sept	14	5.27	12.7	0.29	0.29	0.37	0.004	0.003	0.24	0.01	0.27	0.013	0.016
			0.36	0.3	0.03	0.02	0.04	0.001	0.001	0.03	0.00	0.12	0.001	0.004

