

1

Ecosystem re-entry concepts being investigated by Mott MacDonald

I consider the spreadsheet below (d	eveloped by CM) should be used as a
starting point to address the comple	xity of options pre, intra and post WWTP
treatment and to define discharge q	uality

Action	Include?	Flow	DRP	Part-P	TP (load)	NH4	NO3	Org-N	IN (load)
		m ³ d ⁻¹	g m ⁻³	g m ⁻³	t y-1	g m ⁻³	g m ⁻³	g m ⁻³	t y-1
Pre-treatment									
Business as usual		23800	3.6	2.5	53.0	30.0	0.0	20.0	434.
Water metering	n	23800	3.6	2.5	53.0	30.0	0.0	20.0	434.
Phosphate free dishwashing	n	23800	3.6	2.5	53.0	30.0	0.0	20.0	434.
Reduced infiltration	n	23800	3.6	2.5	53.0	30.0	0.0	20.0	434.
Treatment									
Bardenpho		15600	2.50	0.80	18.80	0.50	3.10	2.60	35.3
MBR		8200	1.70	0.00	5.09	1.00	2.00	1.00) 11.9
Sub-total (existing treatment)		23800	2.22	0.52	23.89	0.67	2.72	2.05	47.3
Bardenpho+FB + Terax +UV		15600	0.20	0.60	4.56	0.50	2.80	3.00	35.9
MBR+FB+UV		8200	1.70	0.00	5.09	1.00	2.00	1.00) 11.9
Sub-total (minimum upgrade)		23800	0.72	0.39	9.65	0.67	2.52	2.31	47.8
+Alum	n	23800	0.72	0.39	9.65	0.67	2.52	2.31	47.8
+Filtration (Disc)	n	23800	0.72	0.39	9.65	0.67	2.52	2.31	47.8
+Denitrifying filter	n	23800	0.72	0.39	9.65	0.67	2.52	2.31	47.8
+Carbon bed	n	23800	0.72	0.39	9.65	0.67	2.52	2.31	47.8
+Third party e.g. Indigitech	n	23800	0.72	0.39	9.65	0.67	2.52	2.31	47.8
End-of-treatment		23800	0.72	0.39	9.65	0.67	2.52	2.31	47.8
Disposal (concentrations and loads to lake)									
Direct to lake	у	23800	0.72	0.39	9.65	0.67	2.52	2.31	47.8
Out of catchment	n	23800	0.72	0.39	9.65	0.67	2.52	2.31	47.8
Lake via wetland	n	23800	0.72	0.39	9.65	0.67	2.52	2.31	47.8
Deep re-injection	n	0	0.72	0.39	0.00	0.67	2.52	2.31	0.0
New LTS	n	23800	0.72	0.39	9.65	0.67	2.52	2.31	47.8
Load-to-Lake (t v ⁻¹)		23800	6.23	3.42	9.65	5.84	21.94	20.09	47.8

Lake Rotorua Remove LTS Lake Rotorua less	At median level 279.8m 762.79 m ³ x 10 ⁶	Volume (litres)	TN mg/l		TN (tonnes) in
Lake Rotorua Remove LTS Lake Rotorua less	At median level 279.8m 762.79 m ³ x 10 ⁶				water column
<i>Remove LTS</i> Lake Rotorua less	762.79 m ³ x 10 ⁶				
<i>Remove LTS</i> Lake Rotorua less		762.79 x 10 ⁹	0.425		324.186
Lake Rotorua less			5.205	less	28.000
	LTS		0.388		296.186
Add direct dischar	ge ex WWTP (with nil attenua	ition)	5.205	plus	38.000
		w	vith 10tTN increme	int	
Combined Lake R	otorua <u>less</u> LTS <u>plus</u> WWTP d	ischarge	0.438		334.186
		Worst-case scer	narion cos assume	s nil attenuat	:ion c 0 4451
• • • ////			x sourie increment	Direstinate	5 0.445]
otes:					
Surface water	• TN is ~0.320 g m ⁻³ for 24	009 – 2012, i.e. 25 %	lower than fig	ure given a	bove.
The above ca	culations do not conside	r retention and will	therefore be in	error by c.	50% or more.
Estimated loa	d to Rotorua is about 65	0 t vr ⁻¹ and current T	FN is 0.320 g m	3	
Assuming no	internal load (in the case	of alum all but elim	inating internal	load) rete	ntion coefficient
will be c 0.75	ner annum			10000,1000	intion coefficient
Addition load	of $10 \pm vr^{-1}$ roprosents a	n increase of c 6%	and we might a	vpoct to so	o an incroaso in
Addition load	of 40 t yr Teplesents a	(0.02 a m ⁻³) to another	and we might e	A march 10 Set	
lake IN conce	Intration of C. 20 mg m ⁻³	(0.02 g m °), to annu		4 g m ³ . wh	

	Value	Ecosystem health				
	Freshwater Body Type	Lakes				
	Attribute	Total Nitrogen (Tro	ophic state)			
	Attribute Unit	mg/m ³ (milligrams	per cubic metre)			
	Attribute State	Numeric Attribute	State	Narrative Attribute State		
		Annual Median	Annual Median			
		Seasonally Stratified and Brackish*	Polymictic			
	А	≤160	≤300	Lake ecological communities are healthy and resilient, similar to natural reference conditions.		
	В	>160 and ≤350	>300 and ≤500	Lake ecological communities are slightly impacted by additional algal and plant growth arising from nutrients levels that are elevated above natural reference conditions.		
	С	>350 and ≤750	>500 and ≤800	Lake ecological communities are moderately impacted by additional algal and plant growth arising from nutrients		
	National Bottom Line	750	800	levels that are elevated well above natural reference conditions		
	D	>750	>800	Lake ecological communities have undergone or are at high risk of a regime shift to a persistent, degraded state, due to impacts of elevated nutrients leading to excessive algal and/or plant growth, as		
	* Intermittently clos	ing and opening lago	ons (ICOLs) are not	well as from losing oxygen in bottom waters of deep lakes.	Shaping	

	Value	Human health for	recreation		
	Freshwater Body Type	Lakes and rivers			
	Attribute	E. coli*			
	Attribute Unit	E. coli/100 mL (nu	mber of E. coli per	hundred millilitres)	
	Attribute State	Numeric Attribute State	Sampling Statistic	Narrative Attribute State	
	A	≤260	Annual median	People are exposed to a very low risk of infection (less than 0.1% risk) from contact with water during activities an with occasional immersion and some ingestion of water (such as wading and boating)	
			95 th percentile	People are exposed to a low risk of infection (up to 1% risk) when undertaking activities likely to involve full immersion.	
	В	>260 and ≤540	Annual median	People are exposed to a low risk of infection (less than 1% risk) from contact with water during activities with occasional immersion and some ingestion of water (such as wading and boating).	
			95ª percentile	People are exposed to a moderate risk of infection (less than 5% risk) when undertaking activities likely to involve full immersion. 540 / 100ml is the minimum acceptable state for activities likely to involve full immersion.	
	С	>540 and ≤1000	Annual median	People are exposed to a moderate risk of infection (less than 5% risk) from contact with water during activities with occasional immersion and some ingestion of water (such as wading	
	National Bottom Line	1000	Annual median	and poating). People are exposed to a high risk of infection (greater than 5% risk) from contact with water during activities likely to involve immersion.	
	D *Escherichia coli	>1000	Annual median	People are exposed to a high risk of infection (greater than 5% risk) from contact with water during activities with occasional immersion and some ingestion of water (such as wading and boating).	Shaping @ Rotorua

Wetland Pond

short detention time to re-introduce treated wastewater to nature – little treated wastewater quality change – can be some improvement and/or some deterioration depending on the contaminant in question.

Wetland pond showing land (gravel/rock) passage into the pond (Palmerston North)

Bankside rock diffuser discharge into Manawatu River (Palmerston North)

ROTORUA

Wetlands for Wildlife – Aesthetic – Cultural purposes Te Maunga, Tauranga (as visited on RPSC/RRSSC hikoi)

With variable detention periods and greater open water clarity/suspended solids and bird contamination – very seasonal – can be very green algae-laden during summer periods.

