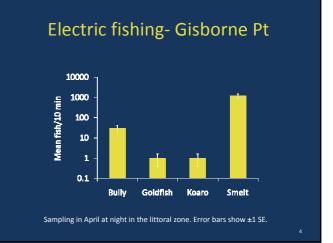
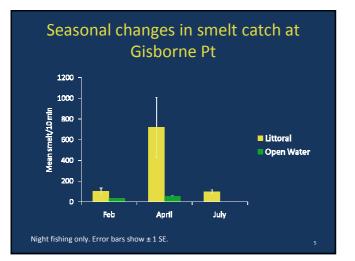
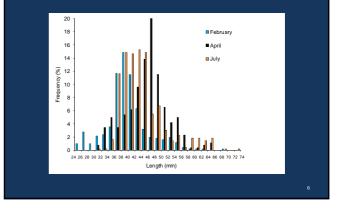


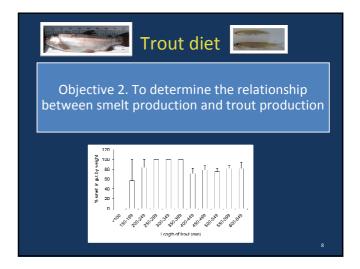
PhD objectives

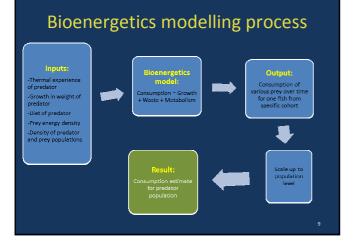


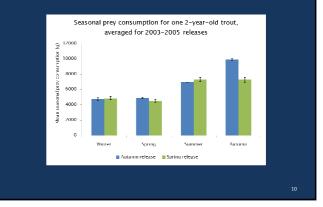

Smelt dynamics

Objective 1. To determine the dynamics of the abundance of common smelt






Smelt length fequency


Comparison with other methods

Method	Mean # smelt	Mean length (mm)
Boat EF- Littoral, Day	2.1	38
Boat EF- Littoral, Night	694	44
Boat EF- Limnetic, Day	0.0	39
Boat EF- Limnetic , Night	48	41
Push nets (current off)- Littoral, Night	158	43
Drop net- Limnetic, Day	3.1	24
Purse seine- Limnetic, Night	4.8	34
Beach seine- Littoral,Day	52	47

Seasonal prey consumption

Effects of temperature Change of prey consumption for 2 y.o. trout with different temperature scenarlos 25000 20000 Total prev consumption (g) 15000 10000 5000 0 Depth 24 m Min depth Mean depth Max depth Depth 34 m Temperature scenario

Smelt spawning and production

Acknowledgements

- Eddie Bowman, Matt Osborne, Gerald Inskeep, Fish and Game staff
- Dudley Bell, Michael Pingram, Rebecca Eivers
- Dave Rowe
- Funding- Environment Bay of Plenty, FoRST Contract UoWX0505, The University of Waikato

