Land Management Change & Land Use Change in the Lake Rotorua catchment

SUSTAINABLE LOAD ALLOCATIONS

Definitions

StAG : Stakeholder Advisory Group

= proud, and nimble on it's feet

SHAG: StakeHolder Advisory Group

= something else entirely

RR: Reduction Responsibility (270tN from pasture)

SLA: Sustainable Load Allocation (435tN total,

256tN for pasture *)

= Nitrogen Discharge Allowance (NDA)

LUC: Land Use Capability

Classes 2 - 8; 2 = high quality, 8 = steep

^{*} If forestry and bush do not receive increased allocations

The 'Straw Man'

- big picture overview

- This presentation attempts to take a 'big picture look' at what might be possible in the Lake Rotorua catchment
- The ideas and scenarios presented are only that
 - in no way is this a prescription of what must happen

The 'Straw Man'

- big picture overview

- But ... it is a picture of what could happen
- The intent is to further the debate and stimulate discussion

Two central issues to deal with

- The allocation of the 435tN sustainable load. TODAYS TASK. 256tN* of this can be allocated to pasture
- 2. Incentives package to remove 270tN from pasture

^{*} If forestry and bush do not receive increased allocations

Data

Underpinning data is that used by NIWA in their ROTAN modelling

Catchment Loads (ex. NIWA) **Spreadsheet link**

** Amended on advice from B	oPRC			At	tenuation	Options fr	om 725t	N
EXPORTS FROM Lake Rotorua Catchment NIWA May 2011	Area (ha)	N loss coeff. (kg/ha/yr)	Derived N loss coeff	N load (t/yr) TLI 4.8	Current Pasture Export	Required Total Redn	Reqd Pasture Reduction	Sustainable Export TLI 4.2
Forest Ceneral	19,594	4	3.68	72.20		0.0		72.2
Forest - Puarenga	1,588	2	2.02	3.20		0.0		3.2
? Gorse 900ha (35-45tN)								
Unidentified Sources						0.0		0.0
Pasture Pasture - Dairy	5,050	56	54.06	273.00				
Pasture - Drystock	15,072	16	15.66		525.7	270.0	270.0	255.7
Lifestyle	1,053	16	15.86	16.70	020.1	270.0	270.0	200.1
Geothermal	1,000	10	10.00	10.70				
Tikitere	28	1071	1071.43	30.00		30.0		0.0
Whaka	31	10	9.68	0.30		0.0		0.3
Urban & Sewerage								
RLTS	300	112	112.33	_ 33.70		0.0		33.7
Septic Tanks	308	85	85.06	33.70 33.70		15.0		20.5 11.2 2.3.4tN
Urban	2,548	10		25.50	**	5.0		έ 20.5
Urban Open Space (UOS)	805	10	9.94	8.00		0.0		8.0
Subtotal	46,377	16	15.63	725	525.7	320.0	270	404.8
Rain (direct to lake surface)	8,079	4	3.71	30.00				30.0
Totals	54,456	14	13.86	755	526	320	270	435

CURRENT LOAD	SUSTAINABLE LOAD			
Pasture N loss coeff. (kgN/ha)	Load (t)	kgN	Sust. Pasture Load	
Current Pasture N loss coeff (kgN)	24.83	141.40	28.00	Dairy average (kgN/ha)
less required pasture reduction (kgN)	12.75	114.30	7.09	Implicit DStk / LStyle av.
Sustainable Pasture N loss coeff (kgN)	12.08	255.70	12.08	Aver.Sus. Pasture Load

To test spreadsheet for BAU : Change values in red to 54 kgN/ha and 270 tN

Various allocations for sustainable load can be tested in lower table

* If forestry and bush do not receive increased allocations

Could these figures change?

Possibly ... if a ROTAN re-run with updated parameters demonstrates the need, or other mitigations are identified

Irrespective ... the possibility of updates does not diminish the need to address the fundamental challenge

Allocations and policy will still require definition

Also need to reconcile various databases

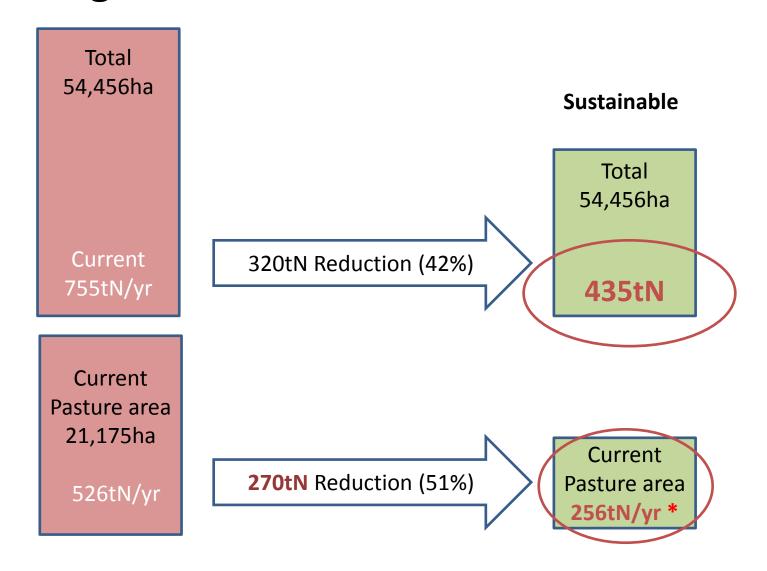
... but the differences are not huge, and are unlikely to change the principles of allocation

eg. ROTAN = 21,175ha pasture

LUC database = 19,500ha pasture (and what's in the 1136ha of Class 0 land?)

RDC database also at variance with ROTAN / BOPRC database

What land to include in allocations?


Land Clas	s 0	2	3	4	6	7	8	Total	cf. NIWA		Sustain	able Load
Dairy	0	0	701	1444	2189	156	8	4499	5050	112%		
Drystock	83	291	2304	4153	6050	972	95	13948	15072	108%		
Lifestyle	1053							1053	1053	100%		
Pasture only	1136	291	3005	5598	8239	1128	103	19500	21175	109%	256tN	12kgN/ha
	% 6%	1%	15%	29%	42%	6%	1%	100%				
plus												
Pines	114	16	662	1378	3608	1065	101	6944	8800	127%	35tN	4kgN/ha
												_
Pasture + Pines	1250	306	3668	6976	11847	2192	205	26445	29975	113%	291tN	10kgN/ha
	% 5%	1%	14%	26%	45%	8%	1%	100%				
plus												
Bush	245	31	694	2382	3953	1909	556	9769	12382	127%	40tN	
Pasture + Pines + Bush	1495	337	4362	9358	15800	4101	760	36214	42357	117%	331tN	8kgN/ha
% of land in each Clas	s 4%	1%	12%	26%	44%	11%	2%	100%	incl.L/Style			-

Sustainable Load

Pasture only
Pasture + Pines
Pasture + Pines + Bush

required average = 12kgN/ha required average = 10kgN/ha required average = 8kgN/ha

Target = 435t Sustainable Load to lake

^{*} If forestry and bush do not receive increased allocations

51% leaching reduction required from pasture

If forestry and bush do not receive increased allocations

Current

Pasture only

21,175 ha 526 tN

25 kgN/ha

Bush, Forest, Pasture

42,357 ha 601 tN

14 kgN/ha

Sustainable

Current pasture area 21,175 ha

256 tN

12 kgN/ha

270tN Reduction (51%)

Current area Bush, Forest, Pasture

> 42,357 ha 331 tN

8 kgN/ha

Sustainable Load Allocation (SLA)

What options?

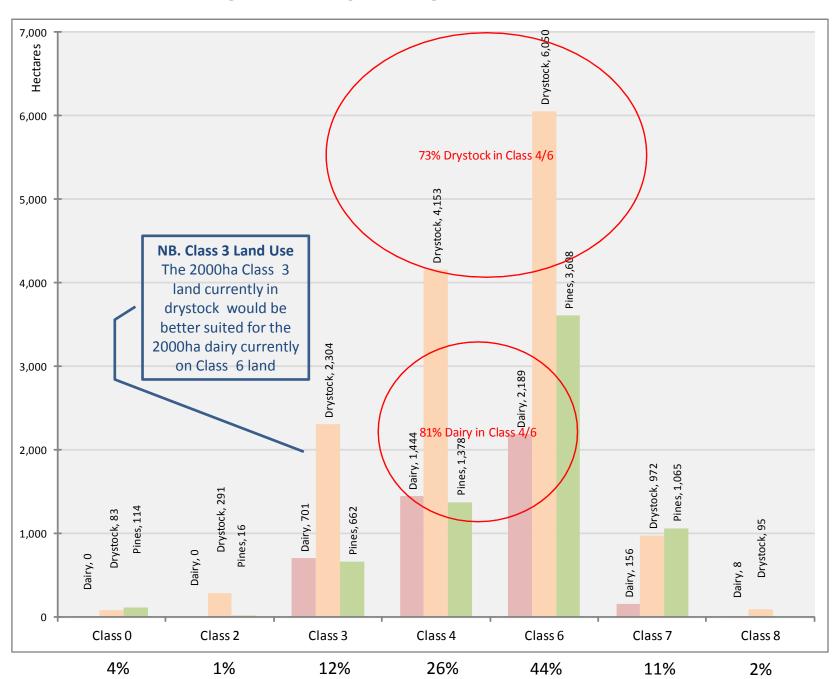
- Grandparenting existing use at current discharge (will not achieve 256tN sustainable pasture load target)
- 2. Sector average (modified grandparenting) existing use at modified and differential discharges to achieve 256tN target (eg. 28kgN/ha for dairy, 7kgN/ha for drystock)
- 3. Pastoral average fixed and equal discharge (12kgN/ha) for every farmed hectare to achieve 256tN target
- **4. Land Use Capability** as basis for sustainable load allocation

Question

Is 'existing use' a fair basis to determine allocations?

Why - for example - should an existing dairy farm on poorer quality Class 6 land receive preferential allocation over higher quality Class 3 land currently in forestry or drystock?

Question


Is allocation by LUC the preferable basis?

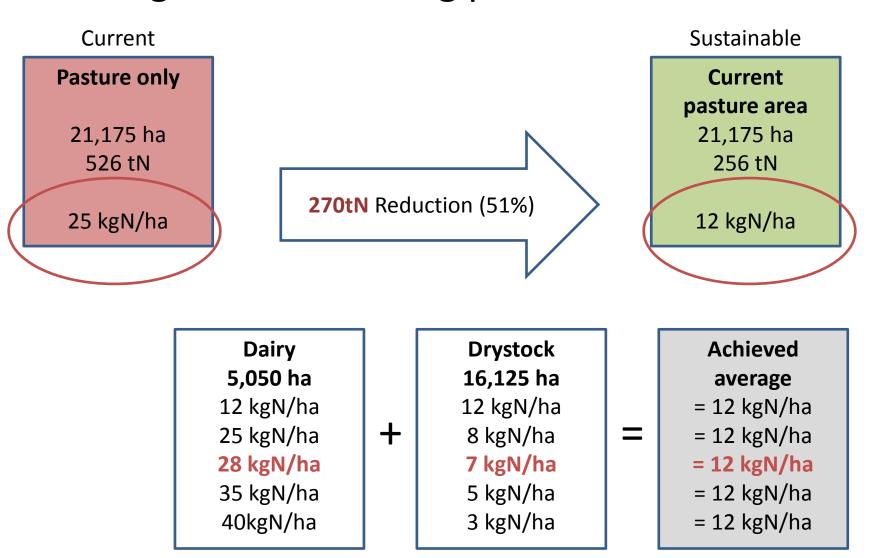
Complex - most farms will have a mix of LUC classes.

Only 15% (approx) of the catchment is Class 2/3 land. 85% (approx) of existing pasture/pine landuse is on Class 4-8 land.

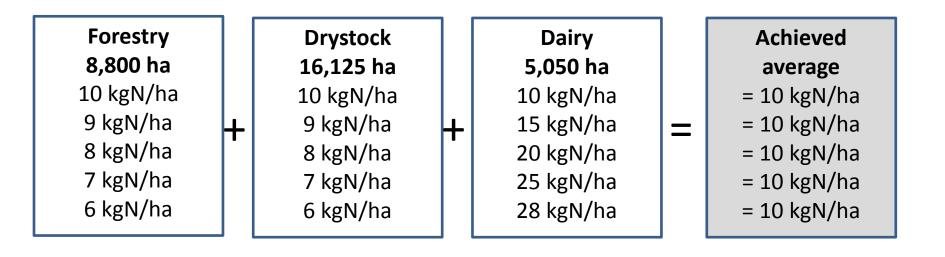
Is Land Use Capability a robust, scientific measure?

Is allocation by Land Capability relevant in this catchment?

How could allocation by LUC look?


%	6%	1%	15%	29%	42%	6%	1%	100%	
Land Class	0	2	3	4	6	7	8	Totals	Targets
Pasture only	1136	291	3005	5598	8239	1128	103	19500	
Correction for area	x 109%								
Corrected Area (ha)	1234	316	3263	6079	8947	1225	112	21175	21,175
Possible NDE Allocation	20	18	16	13	10	4	3	12.10	12.08
cf. Horizons (Year 20)		21	18	13	10	6	4		
	24,671	5,685	52,212	79,021	89,466	4,899	337	256.29	255.70

Note:


81% of existing dairy (& 73% of existing drystock) is on Class 4 or 6 land, which in the above scenario would attract only 13kgN or 10kgN NDA respectively

How else could we achieve 12kgN/ha for existing pasture land?

Combinations which will achieve 12 kgN/ha average for the existing pastoral catchment

Other approximate combinations which include higher allocation to forestry but still meet target 291tN/29,975ha = 10kgN/ha *

* approx. only

Worked example

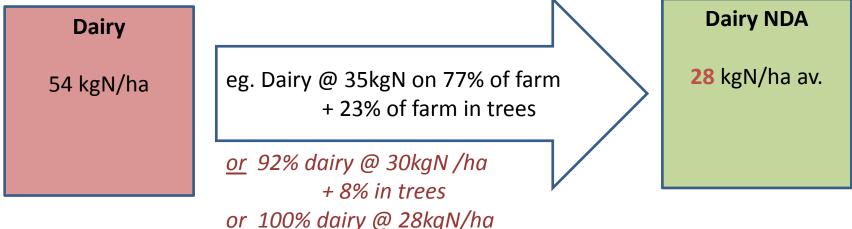
Worked example

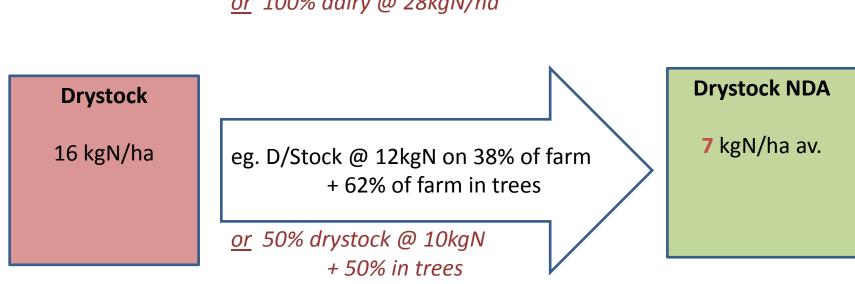
Uses Sector Averaging ('modified grand-parenting')

(could also add a **reducing cap** to achieve the sustainable load over a defined period)

For example:

```
5,050ha dairy x 28 kgN/ha = 141tN


16,125ha drystock / lifestyle x 7 kgN = \underline{115tN}
```


Sustainable pasture load (526tN less 270tN) = <u>256tN</u>

28kgN/ha for dairy and 7kgN/ha for drystock

... how could that look?

Only one of many possible scenarios!!

One of many possible scenarios ...

77% dairy retention, 38% drystock retention

DAIRY			Dairy retained	3,889	Area (ha)	Area %	N Redn	N Redn
Pre	Post		56kgN/ha base		5,050		(kg/ha)	(Total t)
54	45	LMC	Non-subsidised redn		5,050	100%	9	46
45	35	LMC	Subsidised reduction		3,889	77%	10	39
45	4	LUC	Dairy to lowest leach use		1,162	23%	41	48
						100%	_	132
D/STK	& L/S	TYLE	Drystock retained	6,047	Area (ha)	Area %	N Redn	N Redn
Pre	Post		16kgN/ha base		16,125		(kg/ha)	(Total t)
16	14	LMC	Non-subsidised redn		16,125	100%	2	24
14	12	LMC	Subsidised reduction		6,047	38%	2	12
14	4	LUC	Drystock to lowest leach use		10,078	63%	10	101
						100%		137

Will achieve 92% dairy retention if can farm @ 30kgN/ha discharge & 100% if can farm @ 28kgN/ha discharge

SUMMARY										
Class	Unfunded	Purch N	N Redn							
Dairy 1	V 46	87	132							
D/Stk I	N 24	113	137							
TOTAL	N 70	199	269							
Target	70	200	270							

Land Management Change & Land Use Change in the Lake Rotorua catchment

SUSTAINABLE LOAD ALLOCATIONS