

Thanks to my supervisors Troy Baisden and Dave Campell from Waikato University

Thanks BOPRC and Tarawera Ratepayers Society who helped fund this research

25 May 2022 presentation to Rotorua Lakes TAG

Objectives

- To improve understanding of groundwater flows in the Lake Tarawera catchment Water isotopes
- Describe flows and nutrient loads to Lake Tarawera and hydraulically connected lakes under different climate and land use scenarios
 Water balance approach

"The Greater Tarawera Lakes"

- Seven lakes drain into Lake Tarawera via groundwater and/or surface water connections
- Most of outflow from the greater catchment is to the east via the Tarawera River
- Some outflow from the Rerewhakaaitu catchment towards the Waikato
- Possibility of some groundwater flow towards Lake Rotorua???

Conceptual model idea: Alastair MacCormick, slide credit: Chris McBride

Terminology

- Catchment vs local catchment
- Catchment equals local catchment for Lake Okaro, Okareka, Okataina, Rerewhakaaitu, and Tikitapu
- Catchment does not equal the local catchment for Lakes Rotokakahi, Rotomahana and Tarawera
- Greater Tarawera Lakes are all eight lakes

Lake Tarawera catchment

Lake Tarawera **local** catchment

Lake Ōkareka catchment

Lake Ōkareka **local** catchment

Understanding groundwater flow using isotopic analysis of water

Investigation of groundwater flow within and out of the Greater Tarawera Catchment using isotopes of water. Analysis of water from:

- 1. Groundwater within and outside of catchment
- 2. Surface water inflows to Lake Tarawera
- 3. Surface water outflow from Lake Tarawera (the Tarawera River upstream and downstream of the falls)
- 4. Surface water inflows to Lake Rotorua

- Mix Lake/Rainfall
 Mix Lake/Rainfall (geothermal)
 Rainfall
 Uncertain
 - \triangle Groundwater \bigtriangledown Surface water inflow to Lake Tarawera

Water provenance determined via linear mixing models and visual analysis of biplots.

Conclusions:

Lake-to-lake groundwater connections between the lakes of the Greater Lake Tarawera catchment are not widespread and likely to be isolated to localised areas

Groundwater flow out of the Greater Lake Tarawera catchment towards Lake Rotorua cannot be ruled out, although is not likely to comprise large part of the total groundwater outflow.

Outflow from the Lake Tarawera catchment

- Is there evidence of groundwater outflow from Lake Tarawera itself? Yes, The isotopic composition of water from the deep bore at the outlet suggests so
- Are the flow gains observed in the Tarawera River downstream of the Tarawera Falls sourced from lake water from Lake Tarawera?

No, the isotopic composition of river water suggests it is rainfall-recharged groundwater, some of which has bypassed the lake

Lake Mix Lake/Rainfall

Source water contributions determined using a linear mixing model

Conclusions:

Gains in flow in the Tarawera River downstream of the Tarawera Falls are sourced from rainfall recharged groundwater, contrary to previous suggestions that they are sourced from lake water recharged groundwater. The magnitude of the gains indicates that some groundwater from the Tarawera catchment bypasses the lake.

Water Balance

- Annual water balances calculated from 1972-2018 for each lake and catchment
- Variations observed year-year in the flow volumes and contributions of each source
- Different datasets and methods are used to assess uncertainties
- First study to account for land use, land cover and soil water stress in the calculation of evaporation

Water Balances 1972 - 2018

Lake Tarawera

Tarawera Catchment

RainEvaporation from landSW inflows - from inside local catchmentEvaporation from lake(s)SW inflows - from outside local catchmentSW outflowsGW inflows - from inside GW local catchmentGW outflows

GW inflows - from outside GW local catchment

Residual

Average Contributions to Flow

- Rain
 SW inflows from inside local catchment
 SW inflows from outside local catchment
 GW inflows from inside GW local catchment
 GW inflows from outside GW local catchment
- Evaporation from land Evaporation from lake(s) SW outflows GW outflows Residual

Nutrient Loads

- Nutrient loads to each lake from 1972-2018 have been estimated for TN and TP
- The magnitude of nutrient loads to the lakes depends on the **size** of the nutrient source and the **transport** of nutrients
- Hypothetical scenarios modelled for comparison agriculture vs. native forest
- Different datasets and methods are used to assess overall uncertainties

Interannual variability and uncertainty

- Water balance and nutrient load calculations were automated to run using every combination of datasets and methods considered in the study
- Results assessed as probability distribution
- I used the 95% confidence interval of the distribution to describe my results as a range
- Automation undertaken with R programming language

Interannual variability and uncertainty

- Bracketing approach used to describe uncertainties
- The outer limits of what's possible within a range of uncertainty most important
- Accounting for seasonal water stress decreases land evaporation by an average of 204 mm/y

Land evaporation – Lake Tarawera Catchment

Lake Tarawera Flows – Mean, median and 95% confidence interval of distribution from water balance

	Mean	Median	95% CI lower limit	95% CI upper limit		Mean	Median	95% CI lower limit	95% Cl upper limit
Inflows (m ³ s ⁻¹)					Outflows (m ³ s ⁻¹)				
Rainfall	2.264	2.277	1.453	3.134	Lake evaporation	0.989	0.972	0.918	1.122
SW in (total)	1.870	1.828	1.582	2.391	SW out	6.775	6.673	5.460	8.092
SW in (from inside local catchment) ⁷	1.336	1.331	1.274	1.398	GW out	3.275	2.958	0.000	9.331
SW in (from outside local	0.534	0.497	0.308	0.948	Water out of GT catchments ²	-	-	-	-
catchment) ¹	0.554	0.497	0.508	0.540	Totals (m ³ s ⁻¹)				
GW in (total)	6.770	6.632	2.300	12.570	lafterri tetel	10.004	10.024	E E 1 1	17.646
GW in (from inside local		1.055			Inflow total	10.904	10.834	5.511	17.646
catchment) ¹	2.029	1.955	0.313	4.277	Outflow total	11.039	10.835	6.462	17.645
GW in (from outside local catchment) ⁷	4.741	4.678	1.961	8.244					

Lake Tarawera nutrient loads: land use scenarios

Summary statistics (t y⁻¹)

		Nitrogen		Phosphorus			
	TN all native	TN current	TN all agriculture	TP all native	TP current	TP all agriculture	
Mean	79.70	106.89	262.17	7.41	10.65	24.87	
Median	79.65	106.82	262.08	7.40	10.65	24.84	
95% CI lower limit	61.03	77.19	169.81	6.00	7.88	16.08	
95% Cl upper limit	97.45	135.08	350.09	9.00	13.79	34.80	
Minimum	52.41	63.53	127.25	5.45	6.78	12.60	
Maximum	117.95	167.63	451.48	10.14	16.08	42.02	
Uncertainty and variability	± 48%	± 57%	± 72%	± 37%	± 51%	± 69%	

Conclusions

- Lake-to-lake groundwater connections likely to be isolated to localised areas
- Flow gains observed in the Tarawera River downstream of the Tarawera Falls are sourced from rainfall-recharged groundwater
- Flows and nutrient loads to the lake are variable year to year
- Groundwater inflows to Lake Tarawera 62% of the total (70% of these from outside of the local catchment)
- Evaporation has a considerable influence on the water balance, accounting for seasonal water stress decreases evaporation by an average of 204 mm y-1

					Groundwater	receiving lake			
		Ôkareka	Ôkaro	Õkataina	Rerewhakaaitu	Rotokakahi	Rotomahana	Tarawera	Tikitapu
é	Ōkareka			Possible				Occuring	
idwater exporting la	Ōkaro	-			-		Likely	Possible	
	Ōkataina	-	-			-	-	Likely	-
	Rerewhakaaitu			-			Occuring	Possible	
	Rotokakahi	Unlikely	-	-	-		-	Not occuring	
	Rotomahana	-		-	-			Occuring	÷
Loun	Tarawera	-	-	-			-		
G	Tikitapu	Possible		Unlikely	-	Likely	-	Possible	

Dark shading indicates confirmed connections

Light shading or no shading indicates unconfirmed connections

Further research recommendations

- Model loads under different land use scenarios
- Investigation of unconfirmed lake-to-lake groundwater connections well installation and testing
- More isotopic analysis and other geochemical analysis to understand groundwater flow pathways
- Refine lake evaporation estimates using buoy data
- Sampling of Tarawera River under different flow regimes
- Detailed studies to quantify interactions between groundwater and lake water
- Resampling of deep bore at Tarawera outlet
- Relationship between lake level and groundwater outflow

Acknowledgements

- My supervisors Troy Baisden and Dave Campbell, University of Waikato
- BOP Regional Council and Tarawera Ratepayers Association for funding
- NIWA for providing rainfall and PET datasets

Demonstration of web app....

https://nickiwilson.shinyapps.io/TaraweraMsc/

Greater Tarawera Lakes - Water and Nutrient Flows

Instructions

This interactive web tool calculates water balances and nutrient loads for the Greater Tarawera Lakes and their catchments based on user input selections. This is useful for visualising, exploring, and communicating uncertainties in the estimates of water flow and nutrient loads.

To explore the data:

- 1. Click on 'Choose Options' to select the datasets and display methods to use in the calculations. Options can then be selected using the four tabs: 'flow datasets', 'groundwater routing options', 'nutrient calculation methods and display', and 'lake concentrations'.
- 2. Click on the 'Click to Run Calculations' button to run the calculations. This may take approximately 20 seconds.
- 3. Outputs can then be viewed by selecting the viewing options (and subsequent tabs displayed on the side bar).

For further information contact Nicola Wilson at nicola_wilson@outlook.co.nz

Background

Lake Tarawera is a large, deep lake located within the Taupo Volcanic zone, 12 km south-east of Rotorua. It occupies a surface area of 41.44 km², and has mean and maximum depths of 50 m and 88 m respectively. Seven smaller lakes within the 'Greater Tarawera Lakes' catchment (Ōkareka, Ōkaro, Ōkataina, Rerewhakaaitu, Rotokakahi, Rotomahana and Tikitapu) contribute flows to Lake Tarawera via groundwater and/or surface water. The quantity and quality of flows from these connected lakes is important in assessing hydrological inputs to Lake Tarawera.

liew catchment flow and nutrient loads:

Select datasets and methods for calculations:

All catchments - annual averages

arawera Catchments Web Tool

Information and Help

Choose Options

Click to Run Calculations

Okareka

Okaro

Okataina

Rerewhakaaitu

Rotokakahi

. Potomahana

Greater larawera Lakes - Water and Nutrie	ent Flows =			
arawera Catchments Web Tool	Flow Datasets	Nutrient Calculation Methods and Display	Lake Concentrations	Datasets and Method Selection
	Date range to dis	splay (flows):		
Information and Help	1972	2018		
	1972 1977 1982 1987	7 1992 1997 2002 2007 2012 202078		
elect datasets and methods for calculations:	Choose Surface	Water Catchment Boundaries:		
Choose Ontions	LIDAR surface	water boundaries - BOPRC		
	White et al. (20	020) surface water boundaries		
	White et al. (20	020) groundwater boundaries		
Click to Run Calculations				
	Choose Groundy	vater Catchment Boundaries:		
	UIDAR surface	water boundaries - BOPRC		
	White et al. (20	020) surface water boundaries		
iew catchment flow and nutrient loads:	U vvnite et al. (20	J20) groundwater boundaries		
I All catchments - annual averages	Choose Rainfall	Dataset:		
- Areaconnerto annai areiageo	VCS Augmente	ed - 5 km resolution		
J Okareka	VCS Biased Co	orrected - 5 km resolution		
	VCS Operation	nal - 5 km resolution		
II Okaro	○ VCS Augmente	ed - 500 m resolution		
	VCS Operation	nal - 500 m resolution		
No Okataina				
		culation method:		
Rerewhakaaitu	EAO56 Standa	anualu conditions (aujusted for soil water stress)		
h Deteletet		and Conditions		
Rotokakani	Rerewhakaaitu C	atchment/Lake portion of		
- Rotomahana	total groundwate	er outflow leaving the		
Rotomanana	Greater Tarawera	a Catchments		
Tarawera	0 0.1	1		
	0 0.1 0.2 0.3	0.4 0.0 0.0 0.1 0.0 0.0 1		

	Flow Datasets	Nutrient Calculation Methods and Display	Lake Concentrations	Datasets and Method Selection					
Tarawera Calchments web Tool	Choose Method t	Calculate nutrient loads:							
Information and Help	Constant Load (N&P)								
•	Constant Concentration - all land uses (N&P)								
	Constant Concentration - agricultural land uses only (N only)								
Select datasets and methods for calculations:		3							
•	Choose Method to Calculate leaching:								
Choose Options	◯ Rainfall dependant								
	Orainage depe	ndant							
Click to Run Calculations	Select water year to show nutrient loads:								
	2018								
View establishers and sutriant loads.	Select Average to	calculate:							
view catchment now and nutrient loads:	Single Year								
All catchments - annual averages	S-year Average								
	5-year Average								
J Okareka	10-year Average	e							
	Select Catchmen	to show distributions for:							
	 All Catchments 								
Okataina	LIDAR surface	water boundaries - BOPRC							
	White et al. (20	20) surface water boundaries							
II Rerewhakaaitu	White et al. (20	20) groundwater boundaries							
II Rotokakahi									
I. Determine									

	Flow Datasets	Nutrient Calculation Methods and Display	Lake Concentrations	Datasets and Method Selection				
Information and Help	Set lake N concentrations							
	Lake	Existing N (ppb)	% Improvement (negative) or % Degradation (positive) Updated concentration (ppb)				
Select datasets and methods for calculations:	Okareka	190.98	-60% -40% -20% 20% 40% 60%	[1] 190.98				
Choose Options	Okaro	717.65		[1] 717.65				
Click to Run Calculations	Okataina	87.79	-60% -40% -20% 20% 40% 60%	[1] 87.79				
View catchment flow and nutrient loads:	Rerewhakaaitu	325.24	-60% -40% -20% 20% 40% 60%	[1] 325.24				
All catchments - annual averages	Rotokakahi	212.46	-60% -40% -20% 20% 40% 60%	[1] 212.46				
Okareka	Rotomahana	185.66		[1] 185.66				
l Okaro			-60% -40% -20% 20% 40% 60%					
I Okataina	Tarawera	93.99	-60% -40% -20% 20% 40% 60%	[1] 93.99				
Rerewhakaaitu	Tikitapu	173.88	50% 40% 50%	[1] 173.88				
II Rotokakahi	Set lake P con	centrations (ppb)						

Greater Tarawera Lakes - Water and Nutrient Flows \equiv

Greater Tarawera Lakes - Water and Nutrient Flows Annual Flows Annual Nutrient Variations Nutrient Distributions Nutrient Distributions - land use scenarios Tarawera Catchments Web Tool Lake Okareka and Catchment Information and Help Okareka Catchment Annual Water Balance Select datasets and methods for calculations: 1.0 -Choose Options 0.5 Rain Evaporation from land Click to Run Calculations 0.0 -Evaporation from lakes SW outflows GW outflows Groundwater leaving GT catchments View catchment flow and nutrient loads: Storage change in lake -0.5 -Residual All catchments - annual averages -1.0 I Okareka 1980 2000 2010 1970 1990 I Okaro 2020 Water Year Okareka Lake Annual Water Balance I Okataina Rerewhakaaitu Alasha Marina 0.5 -Rotokakahi Rain SW inflows - from inside local catchment

- 0.0

SW inflows - from outside local catchment

Evaporation from lake

GW inflows - from inside GW local catchment

GW inflows - from outside GW local catchment

Tarawera

Rotomahana

Greater Tarawera Lakes - Water and Nutrient Flows Annual Flows Annual Nutrient Variations Nutrient Distributions Nutrient Distributions - land use scenarios Tarawera Catchments Web Tool Lake Okareka and Catchment Information and Help Nitrogen Lake Okareka TN load distributions under different land use sceanarios Select datasets and methods for calculations: LIDAR catchment boundaries Choose Options Click to Run Calculations 0.4 -Land Use Scenarios Density All Agricultural View catchment flow and nutrient loads: All Native Forest Current Land Uses 0.2 -All catchments - annual averages I Okareka I Okaro 0.0 -40 10 30 20 I Okataina Total Nitrogen load to lake (tonne/year) Show 10 ∨ entries Search: Rerewhakaaitu Current Land Uses (T/Yr) All Agricultural (T/Yr) 🗘 All Native Forest (T/Yr) TN load statistics Rotokakahi 14.99 34.91 6.49 Mean 1 Rotomahana 2 Median 14.98 34.89 6.48 Tarawera 0.34 3 Standard deviation 1.38 3.06

Greater Tarawera Lakes - Water and Nutrient Flows

Tarawera Catchments Web Tool

Information and Help

Select datasets and methods for calculations:

Choose Options

Click to Run Calculations

View catchment flow and nutrient loads:

I All catchments - annual averages

I Okareka

I Okaro

Okataina

Rerewhakaaitu

Rotokakahi

Rotomahana

Tarawera

Average Annuals

Information and Help

Select datasets and methods for calculations:

Choose Options

Click to Run Calculations

view catchment flow and nutrient loads:

- All catchments annual averages
- I Okareka
- I Okaro
- Okataina
- Rerewhakaaitu
- Rotokakahi
- Rotomahana
- Tarawera
- Tikitapu

/iew nutrient load breakdown by land use:

Nutrient load breakdown