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1. Introduction 

Context 

The Department of Science, Information Technology and Innovation (DSITI) has been 

allocated funding to help address the critical strategic gaps and weaknesses in water models 

created through the long-term focus on operational issues driven by resource constraints. The 

objectives are to develop greater capacity and collaborations through engagement with 

universities, scientific providers and external consultants to position the government for 

modelling requirements for the future. The four-year funding is to improve the integration of 

hydrology, groundwater and water quality models State-wide (not just Reef) and across the 

different scales (paddock, catchment, estuary and marine). The intention is to drive 

consistency in models and modelling practices across Queensland and, in the longer term, 

develop a ‘community of practice’ in model development and model application to better inform 

decision making.  

In that context, the purpose of this discussion paper (referred to as the paper) is to synthesise 

existing knowledge and experience on good modelling practices and principles. The paper was 

developed based on the findings gathered from literature review followed by an expert 

workshop. The workshop was conducted on June 21-22, 2017, and covered the following:  

 Capturing and synthesising the foundations and principles of ‘best practice’ modelling 

procedures and model management  

 Reflecting on current approaches to modelling and model management 

 Developing complementary presentations on R&D modelling principles targeted at 

modellers and for policy makers  

 Recommending methods to retain currency of the best practice and principles of water 

modelling and links to a catalogue of government models (in a Stage 2)    

Scope and focus 

The scope considered in this paper is with respect to the use of water resource models to 

investigate impacts on the environmental system in question (e.g. paddock, catchment, reef), 

both under status quo conditions and in response to management alternatives, climate 

variations and other uncontrollable forces; as well as to adaptively manage the system such 

as through additional monitoring and informative studies. The paper’s focus is set on water 

models developed for ongoing, regular and operational use. These models are built (or being 

built) to answer a variety of policy and management questions. Typically they aim to predict as 

outputs one, or usually more, Quantities of Interest (QoIs) such as some index of water 

quantity, quality or ecological response as a function of time and/or space. Inevitably the nature 

and role of these models evolve over time to cope with changes in the policy context and 

scientific knowledge. The paper covers modelling practices at the different stages of the model 

development and use lifecycle. The lens through which practices are examined here takes into 

account the whole modelling process and the sources of uncertainty to be recognised and 

managed in that process.  
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Paper organization  

The paper is organized as follows: in Section 2, we present an introduction to the concept of 

good practice modelling, and give an overview of research geared towards identifying those 

practices. It includes a discussion of uncertainty types and issues in managing them 

holistically. In Section 3, we present good modelling practices throughout the modelling 

process with an emphasis on where uncertainties arise and considerations in dealing with 

them. We wrap up with concluding remarks and recommendations in Section 4. 



Good Modelling Practice – A discussion paper 

4 

2. Best Practices 

In this section, we define what we mean by best practice modelling. Next, we present views 

on two essential and complementary components of the modelling process: model 

development and uncertainty assessment. These views together provide the basis and 

rationale (i.e. how and why) for identifying the modelling activities, and therefore best modelling 

practices. 

Defining ‘best practice’ 

The quality and outcomes of a modelling process largely depend on the modelling practices 

that are undertaken at every step. Building quality (i.e. relevance, credibility and validity) into 

the modelling (process and outputs) is now very much emphasized in the literature. The search 

for ways to improve the way modelling is conducted is not new. Several attempts have been 

made to investigate and identify those practices (referred to as best/good/core). Best practices 

should be proven-to-work practices for managing common problems encountered throughout 

the modelling process. Identifying best practices helps to provide guidelines for improved 

modelling practice. Such improvements will ultimately lead to more accurate, credible and 

useful models, more insightful model-based recommendations, better-informed model 

adoption, and more importantly improved decision-making. 

According to Black et al. (2011), “best practice modelling can be defined as quality assured 

model implementation to deliver a credible, robust model that is fit for purpose, and its 

application to deliver results, using methodology that is transparent, defensible and 

repeatable.” Modellers working on environmental problems not only build and use models 

according to strict fundamental disciplinary principles, such as mathematics, statistics, 

hydrology, computer science and ecology; they are faced with the ongoing challenge of 

juggling cost, time, and other resource constraints while producing quality products and 

managing stakeholder expectations and interactions. Therefore, best practice means the best 

achievable procedures and outcomes taking into account intended purpose, and trade-offs in 

knowledge, data, resource and time constraints.  

Another corroborating viewpoint of good model development and evaluation practice is in 

Jakeman et al. (2006) who outline “ten basic steps of good, disciplined model practice. The 

aim is to develop purposeful, credible models from data and prior knowledge, in consort with 

end-users, with every stage open to critical review and revision. Best practice entails identifying 

clearly the clients and objectives of the modelling exercise; documenting the nature (quantity, 

quality, limitations) of the data used to construct and test the model; providing a strong rationale 

for the choice of model family and features (encompassing review of alternative approaches); 

justifying the techniques used to calibrate the model; serious analysis, testing and discussion 

of model performance; and making a resultant statement of model assumptions, utility, 

accuracy, limitations, and scope for improvement. In natural resource management 

applications, these steps will be a learning process, even a partnership, between model 

developers, clients and other interested parties.” 

Table 1 provides a (non-exhaustive) list of research geared towards developing guidance into 

good/core/best modelling practices. 
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Table 1: A list (non-exhaustive) of literature offering guidance into good/core/best modelling practices 

Publication Scope, focus 

Robinson (2007, 2008) General modelling and simulation, conceptual modelling 

Argent et al. (2016) Environmental modelling, conceptual modelling  

Black et al. (2014) Water management, whole modelling process, scenario-based 

models 

McIntosh et al. (2011) Environmental modelling, design for improved use and adoption 

Kelly et al. (2013) Environmental modelling, model selection 

Chen, S. H., & Pollino, C. A. (2012) Environmental modelling, model set up and formulation, 

Bayesian network modelling 

Elsawah et al. (2017) Environmental modelling, whole modelling process, System 

dynamics  

Refsgaard et al. (2007) Uncertainty in the modelling process 

Gaber et al. (2009) US EPA Guidance on the development, evaluation, and 

application of environmental models 

van Vliet et al. (2016) Land use change, model calibration and validation, 

Rietveld et al.  (2010) Drinking water treatment, whole modelling process 

Horsburgh et al. (2014) Hydrological modelling, Data sharing 

Jakeman et al. (2006)  Steps in development and evaluation of environmental models 

Australian Groundwater Modelling 

Guidelines (2012) 

Model calibration and uncertainty, groundwater 

The modelling process 

From a development perspective, there are essentially four phases in the modelling and 

assessment process (Hamilton et al., 2015) and these are reproduced in Figure 1. The phases 

tend to be iterative and can be described as 

 Scoping (Model study plan including identifying model purpose and study objectives) 

 Problem framing and formulation (including conceptualisation)  

 Analysis and assessment of options (Model Setup, and Calibration and Validation) and 

 Communicating of findings (Simulation and Evaluation). 

Each phase has several steps as indicated in Jakeman et al.’s (2006) ten steps and in Figure 

1 -- see Hamilton et al. (2015). Refsgaard et al. (2007) provide a very similar delineation of the 

modelling process as indicated by the terms in brackets in the phases above. The main 

difference is that Hamilton et al. combine the most technical aspects of the process, i.e. model 

setup, calibration and validation, into one phase. Most of these steps need expert and/or 

stakeholder engagement, for which there is now much guidance regarding the why and how 

(e.g. Voinov and Bousquet, 2010). The two colours in Figure 1 indicate notionally the 
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proportional emphasis on stakeholder engagement (versus technical model support) usually 

needed in each phase. 

Figure 1: Phases and steps in the integrated modelling and assessment process 

 

Uncertainty concepts and its management 

Being approximations of the real system of interest, models only represent our partial 

knowledge and views about that system. And because the real system is far more complex to 

understand and capture in a model representation, uncertainty is inevitably associated with 

use of the model, and indeed it arises in various ways throughout the modelling process. 

Uncertainty management is now recognised as an essential part of the modelling process and 

has quantitative and qualitative aspects aimed at establishing as far as necessary what we 

know and do not know in terms of predictions (QoIs) required for the problem of interest. 

Therefore the various steps of the modelling process must be paid interdependent attention in 

order that the addressing of uncertainty sources be complete. We refer to this more holistic 

attention here as Uncertainty Assessment (UA).  
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Traditionally, attention has focussed predominantly on the quantitative aspects of UA, often 

known as Uncertainty Quantification (UQ). In many situations UQ has been applied almost as 

an afterthought once the model has been built. Increasingly, guidelines for modelling consider 

quantitative and qualitative aspects as being complementary and to be addressed throughout 

the modelling phases. The term Uncertainty Management (UM) can be thought of as 

combining UA (which may well include UQ) with broader aspects of the identification, 

prioritising, reduction, propagation and communication of uncertainties (see later in this 

section). Inevitably this should always have a qualitative component because some 

assumptions cannot be quantified but must be recognised for their relative effect on QoI 

predictions. Thus good modelling practice will attempt to list assumptions and choices made 

in the modelling process and characterise their effect on those QoIs. Qualitative efforts to deal 

with uncertainty would ideally also include validating the modelling process. For example, 

Kloprogge et al. (2011) use a so-called pedigree approach to value-ladenness. Van der Sluijs 

et al. (2004; 2005) combine qualitative and quantitative measures of uncertainty assessment 

in their so-called NUSAP system.  

Several authors have developed typologies of uncertainty in the modelling process. Walker et 

al. (2003) refer to the nature of uncertainty as either epistemic (due to imperfect knowledge) 

or stochastic/aleatory (due to inherent variability that needs to be characterized for its effect 

on predictions). Epistemic uncertainty is notionally reducible from further studies or data 

collection. The authors also categorise uncertainty by level and source. Another differentiation 

is between ontological uncertainty and semantic uncertainty. Fox (2008) regards ontological 

uncertainty as that due to participants in a process having different conceptualisations of the 

system to be modelled while semantic uncertainty derives from participants giving different 

meanings to the same concepts or terminology. Ontological and semantic uncertainty are best 

handled through stakeholder engagement activities.  

Guillaume et al. (2011, 2012) take this further by proposing an Uncertainty Management 

Framework (see Table 1 which uses the examples of uncertainties ion data, model structure 

and parameters to suggest methods for dealing with those uncertainties). The framework 

categorises methods for dealing with uncertainty by source and task according to seven 

iterative steps.  

 identifying the uncertainties  

 prioritising resources to address them  

 reducing the uncertainties critical to the problem purpose  

 describing the uncertainties  

 propagating them through the model 

 communicating uncertainty to model users and clients, and 

 anticipating and managing residual uncertainty. 

The rationale for such a framework is that, when considering the different sources of 

uncertainty (as they arise throughout the steps of the modelling process) and when integrating 

several different model or system components, it may not be efficient to invest considerable 

effort and resources toward reducing uncertainty in one source if the results are dominated by 

uncertainty in another. Thus all sources of uncertainties need to be considered for their 
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criticality in addressing objectives. In other words, to be effective and efficient, uncertainty 

management should be prioritised toward uncertainties that are most relevant to the task. In 

the next section we indicate where uncertainties occur in the modelling process and the 

choices and considerations that must be made to realise the benefits of good practice. Refer 

to Jakeman and Jakeman (in press) for a more explicit list and technical discussion of the 

sources of uncertainties as well as new methodological opportunities for addressing them. 

Table 2: Categorisation of uncertainty methods by task and source. Categories 
identified by Matott et al. (2009) are in bold, while qualitative approaches are in italics. 

  

Task Modelled 

outcomes 

Data Model Structure Model parameters 

Identify  Expert elicitation, 

stakeholder 

methods  

Quality Assurance 

NUSAP  

Identifying 

assumptions  

(clear from 

structure)  

Prioritise  Expert opinion  Sensitivity 

analysis  

Expert opinion  Sensitivity 

analysis, 

Identifiability 

analysis  

Reduce  (reducing 

uncertainty at their 

source)  

Data acquisition 

planning  

Model verification  Parameter 

estimation, 

Bayesian 

Networks  

Describe  Model validation.  

Extended peer 

review  

Data analysis, 

NUSAP (Van der 

Sluijs et al. 2004), 

DUE (Brown and 

Heuvelink 2007)  

Info-gap theory 

(Ben-Haim 2006)  

Parameter 

estimation  

GLUE (Beven and 

Freer 2001), 

BATEA (Thyer et 

al. 2009)  

Propagate  Methods for 

combined 

uncertainties.  

e.g. Meta-models  

Uncertainty 

analysis, 

Bayesian 

networks  

Multimodel 

analysis, 

Exploratory 

modelling and 

analysis (EMA) 

Uncertainty 

analysis, 

Bayesian 

networks, EMA, 

Error propagation 

equations  

Communicate  Confidence 

intervals, risk, 

consequences  

Consequences for 

model  

Listing of 

assumptions and 

limitations  

Consequences for 

model  

Manage  In modelling, addressed in communication with 

stakeholders  
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3. Achieving best practice: considerations 

Model purpose and objectives  

The purpose and objectives of a model should include a clearly articulated set of user data 

requirements, processes to be represented, questions, functionalities, system boundaries and 

predictive quantities of interest (QoIs). The model’s purpose and objectives need to be 

considered within the project’s constraints such as available time and resources, and 

managing client’s expectations and avoiding over-sell. This includes determining whether QoIs 

are absolute values or are relative to a baseline.  It also includes functionality in terms of what 

input variables or model parameters may need to be varied as part of model application.  The 

strength of evidence sought from the model, in terms of supporting decisions, should be 

agreed; for example is it making broad generalisations to support state land management 

policy among other sources of evidence, or is it intended to be the main line of evidence in 

assessing the impacts of a local project. These considerations need to be clearly 

communicated to the client, along with setting clear agreements on the format at which model 

results will be delivered (e.g. reports, raw computer runs, analysis results) and ways to 

communicate about uncertainties of results (e.g. probability distribution functions, ranges, 

qualitative or categorical descriptions) and their visualizations and tabulations. In some 

situations, the client may have a very clear understanding of the modelling objectives. 

Otherwise, the modeller(s) and the client need to work closely to formulate those requirements. 

Of course ongoing projects may have already specified their modelling purpose but even then 

there may be some advantage in revisiting the specification to make it more exact, and/or to 

simplify the problem in a way that still answers valuable questions but does so with more 

certainty.  

Actors: modeller, client and other stakeholders 

In essence, model development and use is a social communication process, throughout the 

steps, with stakeholders to build confidence and trust. Successful management of this process 

is as important as the technical model development aspects because major uncertainties can 

emanate from such basic aspects as working on a poorly formulated problem, neglecting to 

include valuable knowledge and perspectives from key interest groups and experts, or poor 

communication in general. However, this process can be challenging, especially in a multi-

agency context, with multiple intended uses and end users, each with slightly different needs 

(e.g. government agencies and farmers, or operational river managers and policy planners). 

The effectiveness of this process requires well-rounded modelling competencies, with good 

soft skills (i.e. communication and interpersonal skills). Some of the useful principles to put into 

practise are: 

 Engage with stakeholders from the very early stages of the modelling process. This 

includes explicitly accounting and planning for the time and resources required 

 Ascertain and communicate the model’s value in the problem context, and develop 

realistic expectations about what the model and the modelling process can and cannot 

do 

 Agree on the underlying conceptual models of the system with stakeholders 
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 Approach the process from a position of humility and goodwill, embracing relationship 

building, rather than a position of peddling expertise, 

 Work with stakeholders to design communication products and model interrogation 

tools (e.g. end-user interfaces, visualisation methods) that suit their needs 

 Adopt effective science communication practices, such as using easy to communicate 

language (avoiding technical and academic jargon), filter and synthesise large amounts 

of information to communicate the most useful insights, and understand people’s 

cognitive biases and build their understanding step-by-step 

 Document and peer review both the model itself (including its scientific basis and 

practical implementation) and, just as importantly, the model development process to 

establish credibility and legitimacy. 

Conceptualisation  

Conceptual models are qualitative representations of the model content: its components and 

relationships. Developing conceptual models involves making assumptions and 

simplifications. Assumptions are made when there are uncertainties or beliefs about the real 

world being modelled. Simplifications incorporated in the model are to enable more rapid 

model development and use but they can also be used to reduce uncertainties that would be 

associated with an overly complex model. Risk-focused validation of the conceptual model is 

needed to improve the model validity (i.e. from a modeller’s perspective, the model produces 

sufficiently accurate results for the purpose at hand) and credibility (same as validity from a 

client and user perspective, and potentially from a legal perspective). The risk associated with 

each assumption can be assessed (quantitatively and qualitatively as relevant) according to 

the level of confidence and impact (Guillaume and Elsawah, 2014), along with transparent 

documentation of the methods and data used to conclude the risks (Sargent, 2013). Validating 

and testing the conceptual model should not only be limited to the conceptual model itself, but 

needs to include the process used to produce the conceptual model, raising questions such 

as: 

 Is the process of producing the conceptual model sufficiently legitimate, for example 

involved key stakeholders appropriately? 

 Is the process of producing the conceptual model sufficiently credible, for example 

involved relevant expertise and independent peer review? 

 Is the conceptual model credible and defensible by virtue of the fact that suitable 

calibration and validation procedures have been followed? 

If the strength of evidence provided by the model is examined in court, the legitimacy and 

credibility of the conceptual model are likely to be closely scrutinised. From a scientific 

perspective a conceptual model should be treated as a hypothesis, whereby if the model output 

can be confidently concluded to be inconsistent with the observed behaviour of the system 

then the conceptual model is rejected; and if this cannot be concluded as such then it is 

provisionally accepted as a possible model and new observations are recommended to further 

test the model. This scientific viewpoint is different from the more engineering-orientated 

‘fitness-for-purpose’ viewpoint, whereby the model may be accepted as being fit for purpose if 

it can predict the QoIs of interest; however both require the recognition that the model will ‘fail’ 
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if subjected to a wider range of stress tests and that the model is only one of potentially many 

acceptable hypotheses. 

Data collection, cleansing and preliminary data analysis 

Data with respect to environmental model development are typically imprecise, often sparse 

in space and/or time, with systematic and/or random errors, and/or inadequate coverage of 

conditions, rendering them insufficiently informative for model calibration. Their errors affect 

calibration of the model while errors in data inputs also affect outputs when using the model in 

a predictive or simulation mode. Appropriate infilling of missing data depends on circumstance 

(simple interpolation is often inappropriate, for instance between a sample taken during a low-

flow period and a little after the start of a flow event). Inadequacies in data, both from errors 

and non-informativeness, need to be taken into account in the method for calibrating a model, 

and appropriate limitations on its subsequent use reported and communicated. 

There is still much however that can be done to improve such situations. Simple text-book 

analysis of data to reveal their signals and uncertainties before modelling is under-practised, 

or at least under-reported. A wealth of tools is available to detect outliers, trends, implausible 

correlations, timing errors in model response, and generally to extract information from data. 

The value of simple plotting and visualization should not be ignored. 

There is also much to be gained from more attention to the optimal design of experiments for 

data collection in the future. Because collection of experimental data is expensive and only a 

limited amount of experimental data can be obtained, it must be recognised that not all 

experiments, however, provide the same amount of information about the processes they are 

helping inform. Consequently, it is important to design experiments in an optimal way, i.e., to 

choose some limited number of experimental data to maximize the value of each experiment. 

Optimal experimental design (OED), that is using physical models to guide experiment 

selection, has been shown to drastically improve the cost effectiveness of experimental 

designs for a variety of models, including those based on ordinary differential equations, partial 

differential equations and differential algebraic equations. OED has been developed in both 

Bayesian and non-Bayesian settings (Atkinson and Donev, 1992). When model observables 

are linear with respect to the model parameters, alphabetic optimality criteria are often used. 

Model selection 

Models can be categorized in different ways (Kelly et al., 2013; Balci, 2007), including: 

 type (e.g. empirical, conceptual, physical, numerical, analytical) 

 treatment of space (e.g. non-spatial models, lumped spatial models, grid spatial 

models) 

 treatment of time (e.g. non-temporal, steady state, lumped discrete, dynamic) 

 composition (e.g. coupled, integrated) 

 execution (e.g. distributed, web-based) 

Various considerations influence the modeller’s choice of the most appropriate model. First of 

all, the model needs to have the ability to estimate the parameters/variables of interest for the 

study at the right scale and resolution (i.e. temporal, spatial, and thematic) which matches the 

rate of change in the system of interest (van Delden et al., 2011). Empirical and statistical 
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models are appropriate only for predicting responses within the range of existing observational 

datasets (Robson, 2014). Observational datasets may consist of historical observations for a 

particular system, or observations from a range of similar systems with varying characteristics 

(e.g. similar catchments with varying land uses). If a model is to be used outside this range - 

for instance to predict effects of long-term climate change or to predict results for a region in a 

different climatic zone - then it is necessary to use a process-based model that reflects what 

is known of the (physical, chemical and biological) mechanisms of change. Even when using 

a process-based model, it is important to evaluate the assumptions underlying the model to 

verify that they still apply in the changed circumstances. For example, representations of the 

effects of variations in temperature in most aquatic ecosystem models assume increasing 

biogeochemical process rates with increasing temperature (e.g. an Arrhenious equation 

(Goldman, 1979)). In reality, some rates, such as phytoplankton growth rates, will decline 

above some optimum temperature (typically around 30°C; e.g. Coles and Jones, 2000)), so 

these models may need modification if applied to tropical regions or for climate change 

scenarios. Another example is the case of a hydrological model that is calibrated using flow 

estimates derived from a rating curve. Large flood events may take the system beyond the 

valid range of the rating curve, where the actual relationship between water level and flow may 

be quite different from that predicted (e.g. due to overbank flow). Long-term hydrological 

simulations may need to take into account changing river morphology, while for short-term 

simulations, this is usually not necessary. 

Another crucial consideration is the ability to scale up results from the model (temporally and 

spatially). Special attention needs to be given to the spatial and temporal discretization used 

in the model, and how these may influence the output accuracy. Very finely grained models in 

time and/or space do not necessarily lead to more accurate results. Detailed models can be 

mistakenly perceived as highly accurate, while the benefit of using fine time steps and grid 

sizes can be in reducing the numerical error. The other pitfall to recognise and address is that 

available data do not match the temporal and spatial resolution of the model. This can mean 

changing the model resolution, implementing methods to interpolate the data, and/or 

acknowledging the influence of granularity chosen of QoIs. 

A further consideration is whether data are available as input to drive the model of choice, and 

more importantly, whether we have means to validate the model output, especially that at high 

spatial resolution. It may be valuable to seek available knowledge, including that of both 

scientific experts and land/water managers, about how the system functions, and how 

observations from other contexts (e.g. other catchments or paddocks), can be generalised or 

adjusted to be useable in the model.  

A model’s flexibility, including the ability to update code and functionalities, can be an important 

consideration in model selection, especially for models whose basics are likely to have a long 

shelf life. 

Finally, there are contextual factors (e.g. past experience of the modelling team, previous 

investments in modelling platforms) and constraints (e.g. the requirement to use the same 

model across the region for consistency) that can be influential in model selection. 

In the next two sections we discuss sensitivity analysis and calibration issues. These can be 

valuable for helping decide between models of the same type but of different complexities such 

as in level of process description and/or parameterisation. 
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Sensitivity analysis 

Sensitivity analysis (SA) comprises a formal, quantitative set of methods used to identify the 

sources of uncertainty arising from model parameters and inputs, and their relative influence 

on outputs (Saltelli et al., 2004). A sensitivity index measures the ratio of a change in a model 

output (particularly the QoIs) to a change in input or parameter. The purpose of SA, often used 

as a step prior to model calibration, is understanding and quantifying: (a) how each model 

parameter and potentially other model inputs, such as initial conditions and forcing variables 

like climate, affect relevant model outputs; and (b) how any parameter interactions contribute 

in strength to model outputs. Thus it is of assistance in determining which parameters and 

parameter combinations should be prioritised in calibration; and more generally which model 

inputs should be prioritised for uncertainty reduction. Results may suggest looping the 

modelling process back to an earlier step, for example to revising or indeed simplifying the 

conceptual model.  

SA can also direct additional measurement efforts, whether to improve the prior information 

used to inform specification of sensitive parameters, to improve measurement of inputs to 

which the model is particularly sensitive, or to improve monitoring in ways that will better 

constrain calibration of sensitive parameters and other model inputs. SA may also be used 

post-validation, in application of the model, to test how outputs vary over different management 

options. Identifying sensitive inputs allows future research to focus on increasing knowledge 

of the behaviour of the inputs in order to constrain the input variability and hence reduce the 

output uncertainty. Good and robust SA can save a lot of time and effort. Identifying 

insignificant inputs can also help refine model structure through the combining or removal of 

parameters that have negligible effect on the behaviour of the model.  

Some commonly used SA techniques include: local sensitivity methods; variance based 

techniques; and regional sensitivity analysis. Local SA methods, such as automatic 

differentiation (Wengert, 1964) and the Morris method (1991), characterize sensitivity by partial 

derivatives or gradients at the local point. These methods are generally very simple and easy 

to implement and work well for linear models. However, when the model is non-linear, the 

results obtained at a nominal point are in general not representative of the entire space. 

Variance based techniques, such as the Fourier Amplitude Sensitivity Test (FAST) (Saltelli and 

Bolado, 1998) and the Sobol (1993) method involve decomposing the output variance into 

parts attributed to individual variables and interactions between variables. Regional Sensitivity 

Analysis (RSA) (Hornberger and Spear, 1981) partitions model realizations into behavioural 

sets and non-behavioural sets; that is the set of input factors that satisfy the problem 

constraints and those that do not. 

Recently a new technique known as active-subspaces has become popular for identifying 

lower-dimensional structure. Unlike the aforementioned methods, active subspaces can 

identify directions in parameter space which may not be aligned with the parameter axes that 

significantly influence a QoI. These directions are the eigenvectors of a matrix derived from 

the gradient of the parameter-QoI map (Jefferson et al., 2016). Related to sensitivity analysis 

is break-even analysis. It identifies model variables at tipping points where one is considering 

management options two at a time and conditions and uncertainties can be generated to define 

at which points one option is as good as another (Guillaume et al., 2016). 
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Model emulation (also known as surrogate or meta-modelling) is the practice of developing a 

simpler (usually statistical) model that is fitted to and approximates the outputs of a more 

complex model. The surrogate model can be used to facilitate a more thorough sensitivity or 

uncertainty analysis than would be possible with the more complex model, or it can be used to 

allow simulation of a wider range of scenarios. Fraser et al. (2013) review the types of emulator 

models that are relevant to predicting time-series of environmental variables, and examine the 

errors that arise when this approach is used to upscale complex field-scale models into a 

catchment scale model. Also see Castelletti et al. (2012) and Razavi et al. (2012) for reviews 

and examples of relevant emulation applications. Moreover, model emulation methods 

promote computational efficiencies by replacing models with slow runtimes, as often occurs 

with integrated, multi-component models, and mesh-based physical representations such as 

groundwater and hydrodynamic models. 

Calibration and model structure 

Parameters may be either calibrated from data, and/or specified from prior knowledge (such 

as may be assumed from expert opinion or measurement). Estimated parameters will always 

have uncertainty but so will parameters that are considered known or can be measured. For 

example, in the latter case aquifer properties vary across very small scales yet a parameter 

value for conductivity obtained from a groundwater pump test at a specific location may be 

used or adjusted to represent them at some specified larger scale. The chosen level of model 

parameterization can have significant effect on whether a model can reproduce experimental 

observations. This is particularly true for parameterization of spatially or temporally varying 

fields such as conductivity. The complexity of the parameterization of conductivity can range 

from a single parameter for a homogeneous aquifer, to multiple parameters for a regional 

conductivity, to thousands or even millions of parameters for a fully spatially distributed 

conductivity. A single parameter may be easily estimated from data, however may result in 

poor fitting to data, whereas a highly distributed conductivity may lead to overfitting and only a 

subset of parameters being informed by data. 

While the purpose of model calibration is to identify the parameter sets that may be considered 

‘optimal’ in terms of the selected objective function, often the focus is on finding the single best 

parameter set. As the optimal value of the objective function may be below a pre-specified 

threshold for the model to be considered potentially fit-for-purpose, then the purpose of the 

calibration becomes a decision-gate at which the modelling process loops back to one of the 

earlier stages. A fundamental principle for sensitivity analysis and calibration, in the context of 

developing a fit-for-purpose model, is that the target objective function should be a relevant 

error function or metric of the QoIs. While this principle seems straightforward and certainly 

obvious, its practice is weak. In surface water hydrology for example there is undue attention 

to a measure of mean squared error, known as Nash-Sutcliffe efficiency, which places most 

focus on fitting high flows. Careful attention to what are the precise objective functyions (i.e. 

error functions of the QoIs) is a sure way to reduce uncertainties that would otherwise be 

manifested.  

Bennett et al. (2013) present a wide range of performance and objective function measures 

and methods, including visual plots, which should be considered as objective function metrics 

for optimizing the estimation of parameters. In particular, it is some function(s) of the quantities 

of predictive interest (QoIs) that must be deliberated and specified, requiring knowledge of the 
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natural and human setting, which is often best realized through an appropriate participatory 

process (Hamilton et al. 2015). An example in hydrology of a more exacting purpose (than say 

prediction of quantity fluxes) would be where surface and/or groundwater modelling need to 

predict QoIs that relate to ecological needs. Hence the QoIs in that case could relate to surface 

and groundwater levels; but it might be a function of those that is of more specific interest, 

such as the timing and pattern of surface and/or groundwater flows, which in turn might need 

to be specified in numerical terms as targets or indicators. And experts might further confirm 

how accurate in either quantitative or categorical terms the associated prediction of the targets 

need be for the modelling to be useful. But sometimes a failing can be just that the modeller 

does not relate the aims of the modelling to either the objective functions used to optimize 

model parameters or relevant performance measures (Bennett et al., 2013). As an example 

one may wish to accurately predict the level of an aquifer at a set of specific locations. In this 

case a very fine scale spatial model will be important for capturing the desired quantities. 

However a lumped model, which may be good at predicting total water volume in the aquifer, 

would not be capable of predicting local quantities accurately. But the fine scale model may 

need to be most accurate at certain locations, for example where interactions with surface 

water occur; and/or that the model may need to be most accurate at times when the stream is 

losing (or gaining) water to (from) the aquifer. The objective function for model calibration 

therefore needs to take into account the QoIs and the type of predictive error in them that is 

appropriate to minimize. In general, it is a good practice to examine the effects of 

different/multiple objective functions, and to perform sensitivity analysis (for uncertain input 

and parameters as well as presumed certain parameters). 

Selection of calibration periods, and examining the effects of different calibration periods, is 

crucial. The period of calibration should be determined in the context of the model’s purpose 

and use. For example, a model that is calibrated against average conditions, and assessed 

only in these conditions, should not be used directly to predict quantities associated with 

extremely wet or dry states. Water models calibrated on different periods will have different 

behaviours and parameter values, substantially so when the region of application suffers 

strong climate variability.  Wherever possible one should calibrate a model on different periods 

and assess the performance of each on all other periods. This so-called cross-validation (see 

next subsection) is an empirical integrator of uncertainties and provides a valuable assessment 

of the minimum uncertainties to be expected when making predictions. 

One consideration is the extent to which the datasets for calibration cover the potential range 

of inputs to the model rather than how large is the dataset. In some circumstances, the 

hydrologist for instance may want the model to fit best to low flows, or high flows. Since the 

model will fit best to the mean of the data set (Venables and Dichmont, 2004) the objective 

function and the weighting given to the data in different ranges needs to be carefully 

considered. Another way is to bin data in the range where the model does not need to fit as 

well as a means of lowering the weight given to this data. 

A common glaring deficiency is the omission of a cross-correlation analysis between model 

residuals (predictions minus corresponding observations) and model inputs to assess if there 

seems to be something missing in the model’s explanation of outputs. Verification and indeed 

validation must not be carried out deterministically but rather executed to account for the model 

uncertainty, e.g variation in convergence rates of mesh refinement studies, due to parameter 

uncertainties. 
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Prior knowledge may be used to constrain parameters in the formulated model structure. 

Inappropriate constraints may underestimate or overestimate uncertainty such as the way 

priors are selected for estimating aquifer parameters for conductivity and storativity. For 

example an under-estimation of the variance in model priors will lead to a misleading under-

estimation in the uncertainty of outputs of a groundwater model. Similarly an over-estimation 

of prior uncertainty can lead to overly conservative estimates of uncertainty in predictions. Thus 

prior knowledge should be assigned its own level of uncertainty and the effect of that on 

predicted QoIs and associated indicators determined. For groundwater flow, simplified models 

based on analytical solutions such as those of Raats (1978a,b;) can offer insights that can help 

with understanding: for example the likely distance that solutes can travel with time from a sink 

(river), where management interventions will be most effective and the fact that it could take 

millennia before the consequences of interventions have effect.  Similarly, for interflow and 

surface flow, analytical models (Cook et al. 2009; Cook etal. 2011) can offer considerable 

insight when assessing model output.  

Importantly, calibration can be defined to include identification of model structure, inputs and 

boundary conditions, not just estimation of a model’s parameters. Model structure in the water 

domain will relate predominantly to the complexity of process (types and detail) assumptions 

considered, as well as levels of spatial and temporal discretization.  

Formal statistical tests for differentiating among different model structures are well developed. 

They provide criteria which trade the number of parameters against the improvement in model 

fit to observations. Because of their reliance on statistical assumptions, they are best treated 

as guides, checking the results of the structure recommended on other grounds such as 

predictive performance on independent data sets, credibility of parameter estimates, and 

consistency with prior knowledge. The underlying aim is to balance sensitivity to system 

variables against complexity of representation. A key question not often asked is whether some 

system descriptors, for instance dimensionality, discretization and processes, can be 

aggregated to make the aggregation more efficient, worrying only about what dominates the 

system response indicators at the scales of concern. Allowing more degrees of freedom than 

warranted in system representation can lead to overfitting (to errors) and unrealistic model 

behaviours and predictions.  

Working with multiple models are also a useful way to explore uncertainties in model 

formulations. Different model structure candidates or perspectives can be used with tools like 

sensitivity analysis to understand sources of uncertainty. Various techniques such as Bayesian 

model selection can then be used to assess the strengths and weaknesses of each, and under 

which conditions each model is more suitable. Calibrated parameter values can also provide 

clues about the structural accuracy of models. If a model provides a better fit to the 

observational data when one or more parameters are calibrated to unexpectedly or 

unreasonably high or low values, it suggests either a systematic bias in measurements or an 

error in model structure (or in values of other parameters). For instance, a model that requires 

an unrealistically high parameter value for phytoplankton growth rate may be missing a source 

term (seeding of phytoplankton from weir-pool blooms, for instance, or from germination of 

akinetes) or over-estimating a loss term (perhaps it does not allow for the unpalatability of 

some phytoplankton species to grazers, for instance, or does not allow for resuspension of 

diatoms settled to the sediments).   
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In process-based models, parameters usually represent rates and traits that are, at least in 

principle, measurable. In this case, it is often possible to derive considerable prior information 

about the expected values of parameters from the literature, or from local measurements. This 

information should not be ignored in calibration. It can be used in a variety of ways, for 

example: 

 Informing Bayesian parameter estimation or uncertainty quantification approaches; 

 Setting appropriate initial values and value bounds for optimisation schemes; 

 Guiding the selection of parameters that can be assigned fixed values to reduce the 

scope of the calibration exercise and reduce the risk of over-fitting the model. 

Whereas there are solutions to support the automated development of model calibration, which 

can improve the efficiency of the process, some care needs to be taken in using them. Blind 

reliance on these tools may bring the risk of losing data insights that can help interpret model 

results and help understand the system. The use of automated tools should not preclude the 

use of sensibility (or common-sense) testing. It is helpful to the reliability of modelling if these 

sensibility tests are built into the models so that all model runs can be conveniently 

benchmarked. 

Validation and testing 

Model validation is defined by Refsgaard and Henriksen (2004) as “Substantiation that a model 

within its domain of applicability possesses a satisfactory range of accuracy consistent with 

the intended application of the model.” Of course validation must be considered through the 

lens of uncertainty. There are several ways that validation can be approached and a 

combination of methods is typically appropriate.  

Crash or stress-testing the model is an obvious but under-practised exercise to explore model 

strengths and weaknesses. It can be similar to scenario modelling (see Section 3.9) but with 

a different purpose in that attempts are made to see what model parameter sets, observation 

periods and other assumptions and conditions establish limitations or invalidate the model. 

This should include examining the performance of the model through time and/or space to 

assess inadequate performance. Stress-testing should be applied as much as resources can 

allow. 

Hipsey et al. (in prep.) propose a four-level evaluation framework for process-based models 

such as hydrodynamic-biogeochemical models. 

Level 0: Is the model’s behaviour plausible in light of existing theory and system 

understanding? This can be evaluated in consultation with disciplinary experts and/or 

stakeholders, and equates to the ‘sensibility testing’ discussed earlier. 

Level 1: Traditional model evaluation of model performance against monitoring data, such as 

time series of nutrient, sediment and chlorophyll concentrations. Metrics should include 

measures of correlation, measures of bias and other measures of error. 

Level 2: Evaluation of predicted process rates, such as comparing observed versus simulated 

nitrification and denitrification rates, zooplankton grazing rates, and net ecosystem 

metabolism. 

Level 3: Evaluation of the model’s ability to reproduce system-scale emergent properties that 

are not built into the model’s structure and were not considered during calibration. Examples 
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may include phytoplankton community structure (the relationship between percent nano- or 

pico-phytoplankton and chlorophyll a concentration), length scales of eddies, or the statistical 

distributions of nutrient concentrations in different parts of flood plumes. 

With water quality models the drivers for the transport of the solutes and particulates is the 

velocity of the flow (advection) and dispersion. Whereas the drivers for water flow are due to 

potential energy or pressure head differences. This means that calibrating a model for water 

flow does not necessarily mean that this will work well for solutes and particulates. 

A crucial part of testing is placing physical bounds on the uncertainty that can exist. These 

physical bounds can help in reducing what would otherwise be unrealistic uncertainties and 

also help with understanding whether the model is giving sensible answers, as the results 

should always occur within the bounds. For example, in the case of streamflow, we can 

consider the upper bound to be the rainfall, i.e. all the water runs off and appears as streamflow 

during an event. This means that the rainfall times the area of the catchment should be the 

upper bound for the cumulative streamflow for a rainfall event. The lower bound for streamflow 

can also be defined as the larger of zero and (rainfall - potential evapotranspiration) times the 

area of the catchment, as it is unlikely that all of the potential evaporation will be realised.  

 Similarly, limits for water quality constituents can be estimated based on sensible limits and 

used to assess if the model is giving sensible results. Defining these limits is more difficult, but 

plausible upper limits based on observed extreme values of quantities like sediment 

concentration and other water quality parameters are available.  In addition, there are physical 

constraints on volumetric sediment concentration, and relationships among some water quality 

constituents based on stoichiometric principles.  Zero can be taken as the lower limit of 

constituent concentrations. 

 When using evaporation estimates from countries outside Australia, it is necessary to check 

where the data come from. In China, they often use a 0.20 m diameter pan, so the pan 

evaporation figures are much greater than what would be found with a class A pan (McVicar 

et al. 2005).  Because of this Cook and Jayawardane (2008 unpublished) found the pan 

evaporation had to be multiplied by 0.44 to get the reference evapotranspiration. Thus, when 

calculating bounds, it is essential to check that the data used make sense first. 

Close investigation of issues related to uncertainty propagation through coupled and integrated 

models is a promising topic for research and practice. Several groups (e.g. Borsuk et al., 2001; 

Webb et al., 2010; Obenouer et al., 2014) have applied Bayesian Hierarchical Modelling 

approaches to uncertainty quantification and parameter estimation. Key advantages of this 

approach are that it allows prior information (about expected parameter values as well as 

confidence in observational data used to calibrate the model) to be taken into account and it 

provides both calibrated parameter values and model predictions in a probabilistic framework. 

The probability distributions that arise as outputs from one component of an integrated model 

can be used as prior distributions for input to another component of the integrated model 

system. In this way, uncertainty can be propagated through the model system without the 

exaggeration that occurs if propagating confidence intervals (e.g. Larssen et al., 2006). The 

related approach, Bayesian Melding (Poole et al., 2000), can also be used to consider 

uncertainty in model structure 
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Scenario analysis 

In its broadest sense, scenario analysis involves exploring multiple, plausible assumptions 

about future conditions, model structure and parameter values (Alcamo, 2001). For example, 

in an aquifer context, future climate will affect the amount of recharge of precipitation to the 

groundwater, making predictions uncertain. Cross-sectoral issues creating future uncertainties 

may relate to the interactions of proposed energy extraction projects with existing groundwater 

uses for agriculture, or a government policy to issue more groundwater access to increase 

food production. Scenario analysis can be used for many purposes (Maier et al., 2016), such 

as to promote discussion and sharing of knowledge and perspectives and/or to search for 

those scenarios that lead to good, intermediate and poor outcomes. At its core is simulation of 

model drivers and parameter samples, and analysis of the model’s QoI functions (i.e. target 

indicators).  

The use of well-defined, standard and consistent scenario sets (i.e. scenario library), that are 

packaged as a part of the model, is a good practice. In addition to preserving replicability, 

packaging scenario data sets with models provides three significant advantages: 1) it facilitates 

extension of the scenarios to related domains (e.g. running the same or similar scenarios used 

with a hydrological model, but for a water quality model, or an integrated social-environmental 

model); 2) it facilitates cross-comparison of results between models and ensemble scenario 

analysis; and 3) it facilitates comparison between scenario predictions from an existing model 

and from proposed new versions of the same model. 

Rather than attempting to develop a priori a minimal sufficient set of scenarios for stakeholders 

to contemplate, an alternative approach to scenario development is to utilize a model to 

simulate a large space of possible futures and then allow stakeholders a posteriori to visualize 

the entire future space and to articulate preferences. This approach is known as exploratory 

modelling, and is attracting growing attention in the scenario analysis literature (Bankes, 1993; 

Walker et al., 2013). Exploratory modelling represents a family of techniques whose aim is to 

explore robust solutions under various future possibilities as captured in different model 

assumptions and parameter values (i.e. referred to as cases, scenarios, ensembles, and eras). 

Some of these techniques include: Robust Decision Making (RDM) (Groves and Lempert, 

2007; Lempert et al., 2003), Scenario Discovery (Bryant & Lempert, 2010), Dynamic Adaptive 

Policy Pathways (Haasnoot et al., 2013; Kwakkel et al., 2016b), and Objective Robust Decision 

Making (MORDM) (Watson & Kasprzyk, 2017). In principle, these techniques share the idea 

of open exploration and searching for robust solutions. However, technically, they vary in how 

the scenario generation process is conducted, and the type of insights to be generated 

(Moallemi et al., 2017). There is limited understanding of the fundamental differences between 

these techniques, their relative strengths and limitations, and implications into how uncertainty 

is treated and solutions identified (Haasnoot et al., 2013, Trutnevyte et al., 2016). Comparative 

and evaluation studies to investigate differences and complementariness are still needed. To 

support practice, research into good practices for conducting exploratory modelling is also 

needed. 

Communication 

Selecting indicators to communicate about model results 

One crucial issue on communication is selecting the appropriate set of indicators to report the 

modelling results. At a more fundamental level, indicators reflect the objectives/values 
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incorporated in the model. Indicators vary according to multiple aspects, including: level (whole 

system vs sub-system), purpose (i.e. communicate about average performance versus 

variability in performance, communicate about snapshot vs pathway), type (e.g. absolute value 

vs proportional, descriptive vs normative such as difference between hypothesized best value 

and the calculated value), as well as formulation. Different indicators can be used to diagnose 

different system characteristics. Identifying and selecting a suite of integrated and balanced 

indicators is important to ensure that the decision maker has full visibility of the effects of 

different decision options on the system over its lifetime (Bauler, 2012). For example, Fu et al. 

(2017) examined a suite of mathematical indicators used for evaluating the non-market value 

of environmental change. They concluded that all indicators have limitations, and stressed the 

need for contextual information to mitigate possible biases. Note that the number of indicators 

presented to decision makers must be managed. Balancing succinctness and informativeness 

is desirable. Thus we should be educating decision makers of the need to go beyond single 

numbers to indicate uncertainty but also realize that we can be too complex and the amount 

of data overwhelming.  

Communicating uncertainty in written reports 

The language used in science-policy reports is often very measured and calibrated (McInerny, 

et al., 2014), especially when acknowledging uncertainties and knowledge gaps. However, this 

does not consider how the reader interprets these findings and the uncertainty implications. 

Special attention needs to be paid to the way uncertainty is communicated in written reports. 

The way language is used to communicate uncertainty (i.e. uncertainty framing) plays a 

significant role in how uncertainty is interpreted by the reader (Guillaume et al., 2017). Towards 

the development of best practices around framing uncertainty, Guillaume et al. (2017) have 

developed a typology of eighteen uncertainty frames. The typology has both a descriptive and 

prescriptive function to play on communicating uncertainty. In its descriptive role, the typology 

can be used to describe the existing uncertainty frames (at least in abstracts) employed. The 

outcome of the descriptive function is to evaluate how the selection of a particular uncertainty 

frame influences the way the reader interprets the findings. In its prescriptive role, the typology 

gives users conceptual guidance into how to think and select uncertainty frames that best 

communicate their intended message (i.e. fits the purpose). The availability of a range of 

frames helps to raise awareness about multiple ways of delivering the message, which 

ultimately leads to more critical thinking about this when writing a publication or report. 

Visualization 

Effective visualization tools are needed to provide intuitive descriptions of complex and large 

volumes of simulation data. The importance of this task has been recognized, including by the 

US Department of Energy (DOE) which has funded the SciDAC Institute of Scalable Data 

Management, Analysis and Visualization (SDAV). Model visualization is not just aesthetic, but 

effective visualization tools can facilitate better understanding of the processes that produce 

the data, and reveal interesting characteristics of data sets. For decision makers, visualization 

helps distil the key information without being overwhelmed with the modelling details. The 

effectiveness of a visualization technique depends on the problem on hand, considering factors 

such as audience, the intent of the message to be communicated (e.g. communicating about 

trade-offs, uncertainty) as well as the data types.  
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A key challenge in model visualization is communication of large datasets, especially in 

problems with multiple objectives and trade-off solutions. Due to the curse of dimensionality, 

traditional visualization (e.g. the scatter plot) is no longer an appropriate tool in visualization of 

a high dimensional objective space. He and Yen (2017) identified three criteria for high quality 

visualization of high-dimensional multi-objective space. First, it should give accurate 

information of the Pareto front. Second, it should provide decision makers with a clear 

indication of trade-off solutions. Third, the tool must be scalable to higher dimensions and 

larger datasets. The authors reviewed the available approaches, and evaluated their 

performance on meeting these criteria. They concluded that the reviewed techniques can 

satisfy one or two of these three criteria to some degree. However, none can fully satisfy them 

all, which leaves the door open for integrated approaches that can leverage the strengths of 

existing techniques.  

Another challenge relates to uncertainty communication, especially when incorporating spatio-

temporal heterogeneity.  A key tool now used in portraying uncertainty is the Pareto Front. Its 

portrayal of a prediction versus degradation of model fit underscores the fact that multiple 

models might be considered ‘reasonable’ and provides a view of how much model fit would 

need to be lost in order to meet a specific model outcome (Australian Groundwater Modelling 

Guidelines, 2012). See Bonneau et al. (2014) for a review of methods for uncertainty 

visualization, and Kinkeldey et al. (2017) for a review of effectiveness of some of the methods.   

An important concern in developing and using visualization is understanding and mitigating the 

possible biases in audience’s interpretations, which may ultimately lead to over or less 

confidence in the results (McInerny, et al., 2014; Sacha et al., 2016). For example, rescaling 

results through visualization can invite systematic biases. McMahon et al. (2015) found that a 

group of novice readers, who were shown a graph of climate change projections, 

misinterpreted the intended message about the role of socio-economic factors in the IPCC 

scenarios.   

Data and workflow management 

Scientific workflows 

The limited use of well-thought and transparent experimental design inhibits reproducibility of 

results, effective reporting of results, and therefore the credibility of models (Teran-Somohano 

et al., 2014). Modellers usually go through an iterative process of ad-hoc experimentation and 

adaptation till they land on the final set of results on which to base recommendations. In many 

cases, model results are presented as a ‘bunch of results’ without much explanation as to why 

those experiments/results have been cherry-picked, and how they are driven from an 

experimental design that logically flows from the model’s objectives and research/policy 

questions. This is poor practice especially when interrogating large complex models, where 

many possible interactions among factors and outcomes play out. Instead, modellers need to 

embrace the use of automated methodologies that can support transparent experimental 

workflow and allow for systematic understanding of the impacts of the various relationships 

and factors that influence the model’s results (Chakladar, 2016). Methodologies, such as 

Model-driven engineering (MDE) and Model-driven science (MDS), provide principles, 

techniques and tools that meet these needs (Yilmaz et al., 2016). Tools, such as Truii, are 

readily available for modellers. 
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Provenance, governance, and meta-data 

Management of input, intermediate and output data is one of the more difficult aspects of 

modelling – what and how much data to store from a model run and how many model runs to 

store; how to manage updates to input data and record its provenance; how to manage 

updates to the model executable itself; how to ensure that the modeller knows what data they 

are using. Governance of model data requires implementation of strong, internal QA/QC 

procedures that respect in-house work culture while improving practice. Management of 

observed data within a specialized database (e.g. Hydstra for hydrological data) is an industry 

norm that is rarely extended to modelled data. Adoption of new technologies such as scientific 

workflows and data and model service brokering services is low for instance in the hydrology 

modelling community – perhaps a reflection of the level of control in the overall modelling 

lifecycle required of modellers. There can also be tension between corporate IT and its data 

governance practices and the requirements of the modelling community to manage exploratory 

testing and production environments. 

Data and model sharing between collaborators and with the wider data provisioning community 

is improving with the increasing adoption of creative commons and data sharing licensing, 

allowing for use and reuse of data and models between states and partners. Automation of 

parts of the data management workflow can improve its governance – however this requires 

investment of time and resources, and clear sight of the benefits to offset perceived dis-benefits 

(e.g. loss of transparency). 

An effective data management program requires a strategic investment of effort, with the 

vision, and the steps to achieve it, clearly articulated and shared with users and practitioners. 

The goal would be a shift in culture, supported by in-house infrastructure and management. 

Tools such as the Data Management Maturity model (adapted from the Carnegie Capability 

Maturity Model) can be used to assist in identifying the level of data management that is 

required, and achievable. The “gold-standard” is not necessarily appropriate. 
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4. Concluding remarks and recommendations 

Uncertainty Assessment is increasingly being seen as a holistic process that should be a major 

consideration throughout the whole lifecycle of the modelling process. It should be viewed as 

standard modelling practice in the water sector, enabled by its comprehensive and central 

attention in project specifications documents and workflows.  

 To be complete, uncertainty assessment and management in the water sector will almost 

always necessitate the use of qualitative assessments, with quantitative assessments 

wherever possible. The qualitative aspects of uncertainty management include close attention 

to the problem definition step (in the first instance), going beyond the research questions to: 

specifying the specific quantities of interest, conceptual modelling to relate cause and effect 

appropriately, and explicit consideration of the effects of all assumptions and limitations 

(modelling choices and other sources of uncertainty) on predictions. 

 Predictive uncertainties should be evaluated, qualitatively and quantitatively, in terms of the 

effects on precisely specified and argued functions of the quantities of (decision) interest, i.e. 

including the desirable spatio-temporal function of those quantities ( e.g. a mean value, set of 

moments, probability distribution, some property or pattern of a time series). 

 Recommendations that warrant specific attention in the water modelling domain are the 

following: 

 Characterise sources, and try to rank the criticality of, uncertainties through such 

means as expert elicitation, stakeholder engagement, sensitivity and more formal 

uncertainty analyses. 

 Emphasize effective simplification over undiscerning and unnecessary model 

complexity, especially where complexity reduces transparency, increases uncertainty 

and/or hinders its assessment.  

 Educate users of model results about the dangers of being provided only a single 

number upon which to base decisions - but also address their needs, by providing 

uncertainty information in a format that fits within their workflows. 

 Factor in the appropriate costs of holistic uncertainty assessment in project budgeting. 

It will be worth it in the longer term. 

 Communicating uncertainty is an area of emerging attention that could be advanced 

through focussing on meeting its challenges in the water sector. Visualization of 

indicators of concern are an aspect in such an endeavour. Their design should pay 

special attention to possible interpretation biases and ways to control them. 

 Pay explicit attention to the way model results and uncertainty are communicated in 

written reports and publications. 

 Make effective use of user-centred design for visualization development early in the 

modelling process, and leverage different visualization tools to engage different 

audiences (e.g. academics, policy makers, stakeholders). 

 Embrace the use of automated methodologies that can both support transparent 

experimental workflows and allow for systematic understanding of the impacts of the 

various relationships and factors that influence the model’s results. 
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 One of the old mantras re measurement bears repeating, that is pay careful attention 

to the collected data, including measuring the right variables, at the right locations and 

with the right frequency. 
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