
Enhancing the health and resilience of New Zealand lakes

1/10/2015-30/9/2019

The Research Team

University of Waikato:

 David Hamilton, Kevin Collier, Brendan Hicks, Ian Duggan, Maui Hudson, Chris Battershill, Moritz Lehmann

NIWA

• Clive Howard-Williams, John Quinn, Piet Verburg, Sandy Elliot

Cawthron Institute

Dave Kelly, Susie Wood

University of Otago

Marc Schallenberg

GNS Science

Catherine Moore

Governance Group membership

Governance Group Member	Affiliation	Email
Vera Power	MfE	vera.power@mfe.govt.nz
Dominique Noiton	Waikato Regional Council	Dominique.Noiton@waikatoregion.govt.nz
Roku Mihinui	Te Arawa Lakes Trust	roku@tearawa.iwi.nz
Tim Manukau	Waikato Tainui	TimM@tainui.co.nz
Jon Roygard	Horizons Regional Council	Jon.Roygard@horizons.govt.nz
Ken Taylor	Land & Water NSC Director	Ken.Taylor@agresearch.co.nz
Eddie Grogan	Bay of Plenty Regional Council	Eddie.grogan@envbop.govt.nz Eddie.Grogan@boprc.govt.nz
Ken Hughey	DOC	Ken.Hughey@lincoln.ac.nz
Tim Davie	SWIM	Tim.Davie@ecan.govt.nz

Research structure

Operational Costs (even split of operational cost per CS: \$34,013/year)			
1.1	In-lake models and technology for enhancing capability to manage environmental lin	nits	
1.1.1	Applying time-series models to evaluate impacts of variability in contaminant delivery		
1.1.2	Scalable models based on an integrated geospatial platform		
1.1.3	Geospatial platform to support mana whenua restoration of lakes		
1.1.4	Understanding how multiple stressors affect ecological resilience and integrity		
1.1.5	Accounting for food web dynamics in models to predict management outcomes		
1.2	Improved cost-effective in-lake monitoring to support predictions		
1.2.1	Improving real-time high-frequency in-lake monitoring technologies		
1.2.2	Ground-truthing new remote sensing technologies		
1.2.3	Quantifying biodiversity and food web responses to lake resilience		
1.2.4	Cultural indicators of lake health and resilience		
1.3	Prioritising interventions to maintain and restore ecological resilience		
1.3.1	Managing sediment and nutrient legacies		
1.3.2	Food web biomanipulation techniques to enhance ecological processes		
1.3.3	Enhancing refugia for taonga species		
1.3.4	Prioritising lakes and interventions for management action		

Research leaders

1.1	In-lake models and technology for enhancing capability to manage environmental limits	
1.1.1	Applying time-series models to evaluate impacts of variability in contaminant delivery	Sandy Elliot
1.1.2	Scalable models based on an integrated geospatial platform	David Hamilton
1.1.3	Geospatial platform to support mana whenua restoration of lakes	Maui Hudson
1.1.4	Understanding how multiple stressors affect ecological resilience and integrity	Marc Schallenberg
1.1.5	Accounting for food web dynamics in models to predict management outcomes	Kevin Collier
1.2	Improved cost-effective in-lake monitoring to support predictions	
1.2.1	Improving real-time high-frequency in-lake monitoring technologies	Susie Wood
1.2.2	Ground-truthing new remote sensing technologies	Moritz Lehmann
1.2.3	Quantifying biodiversity and food web responses to lake resilience	Kevin Collier
1.2.4	Cultural indicators of lake health and resilience	Maui Hudson
1.3	Prioritising interventions to maintain and restore ecological resilience	
1.3.1	Managing sediment and nutrient legacies	Piet Verburg
1.3.2	Food web biomanipulation techniques to enhance ecological processes	Marc Schallenberg
1.3.3	Enhancing refugia for taonga species	Dave Kelly
1.3.4	Prioritising lakes and interventions for management action	Kevin Collier

