P Mitigations discussion at LandTAG

26 May 2016

Rich McDowell,
Ross Monaghan, Stewart Ledgard, Dave Houlbrooke

PHOSPHORUS (P) LOSS:

Largely by surface runoff
Depends on - soil, climate and topography

- management e.g. fertiliser and Farm Dairy Effluent

Sources: Example

fertiliser	dung	plant	soil
10%	30%	20%	40%

Also - dung direct to waterways

- runoff from lanes and gateways

P LOSS SOURCES

P fertiliser:

Timing: Losses are higher in May-October Form: Super > serpentine super > RPR

FDE:

- Timing, soil type and location relative to waterways
- Rate of application (mm/hour)
- Avoid excess soil P levels

agresearch

LANDSCAPE FLOWS

agresearch

Land use impacts

Catchment losses (1970-present)

Wide range due to:
climate
soil type
topography
management

Sources

SOURCE	Nitrogen	Phosphorus	Sediment	Faecal bacteria
Urine	$* * * * *$	-	-	-
Effluent	$* *$	$* * * *$	$* * *$	$* * * *$
Fertiliser	$*$	$* * *$	-	-
Drainage	$* *$	$* *$	$*$	$* * *$
Soil status	$*$	$* * *$	$*$	$?$
Flood irrigation wash	$*$	$* * * *$	$* *$	$* * * *$
Stock wintering	$* * * * *$	$* * * *$	$* * * *$	$* * * *$
Track/lanes/fence-lines	$*$	$* * *$	$* * *$	$* * *$
Direct stock access	$* * *$	$* * * * *$	$* * * * *$	$* * * * *$

agresearch

Choosing mitigations

| Strategy | Applicable
 land use | Cost
 (\$/kg P
 mitigated) | TP effect
 $(\%)$ |
| :--- | :---: | :---: | :---: | :---: |
| Low rate effluent application to land | Dairy | Low | High |
| Stream fencing | All | Low | |
| Greater effluent pond storage/appl. | Dairy | Low | Medium |
| Optimum soil test P | All | Low | High |
| Low solubility P fertiliser | All | Low | Migh |
| Grass buffer strips | All | Medium | Medium |
| Restricted grazing of cropland | All | High | Medium |
| Alum to pasture | All | High | Low |
| Sorbents in and near streams | All | Very high | Very high |
| Natural seepage wetlands | All | Very high | Low |
| Sediment traps | All | Very high | Low |

Tier 1 BMPs

BMP	Target	Cost effectv.	
Improved FDE management - storage, low rate \& low depth applic.	P, E. coli, $\mathrm{NH}_{4}-\mathrm{N}$	N	P

Tier 2 BMPs

BMP	Target	Cost effectv.	
		N	P
Nitrification inhibitors	$\mathrm{NO}_{3}-\mathrm{N}$	H	na
Wintering cows in Herd Shelters	$\mathrm{NO}_{3}-\mathrm{N}, \mathrm{P}, \mathrm{E}$. coli, $\mathrm{NH}_{4}-\mathrm{N}$, sediment	M	L
- with restricted autumn grazing	$\mathrm{NO}_{3}-\mathrm{N}$	M	?
Substituting N-fertilised pasture with low N feeds	$\mathrm{NO}_{3}-\mathrm{N}$	M-H	na
Constructed wetlands	$\mathrm{NO}_{3}-\mathrm{N}$, E. coli, $\mathrm{NH}_{4}-\mathrm{N}$, sediment	M	L
Grass buffer strips	$\mathrm{NO}_{3}-\mathrm{N}, \mathrm{P}, \mathrm{E} . \text { coli, } \mathrm{NH}_{4}-\mathrm{N},$ sediment	L	L
Limiting N fertiliser use	$\mathrm{NO}_{3}-\mathrm{N}$	M-H	na
	\$/kg High	<25	<100
agresearch	Med Low	$25-75$ >75	$\begin{aligned} & 100-250 \\ & >250 \end{aligned}$

multiple mitigation effects

agresearch

Sediment Yield kg/ha

Total Phosphorus Yield kg/ha

Ammonium Yield kg/ha

Strategic grazing

Control
Strategic grazing

Control	$\begin{array}{c}\text { Strategic } \\ \text { grazing }\end{array}$	Control
4.61	1.24	9.99

Summary

1. Adoption of mitigations depends on:
having a good cost:benefit ratio
a wide range of mitigations to select from
2. Mitigations are more efficient and cost less the closer they are to the source (farm management > amendment > edge of field)
