Phosphorus Mitigation Project

(SFF 404964 – commencing 1st July 2016)

Advancing on-farm phosphorus loss mitigation in conjunction with applied research on a new mitigation tool - the Detainment Bund

Funders:

Sustainable Farming Fund (50%), Co-Funders (50%) DairyNZ, BOPRC, Beef + Lamb NZ, Ballance Agri-Nutrients, Environment Canterbury, Deer Industry NZ. > \$ 400K In-Kind support > \$ 200K

Governance Group of Farmers:

Executive Committee; L McKenzie (Chair), N Saville-Wood (Teasurer), M Birchall, M pacey, B Heard, J Paterson (Project Manager). Committee; R Moore, Jamie Paterson, Hera Naera, T Cairns, J Ford.

Science Advisory Team:

D Hamilton, C Tanner, L Condron, D Horne, G Lucci, D Clarke, V Fulton, J Peryer-Fursdon

Applied Researcher:

To be confirmed

"..... anthropogenic phosphorus is predominantly particulate..."

"Management of anthropogenic particulate phosphorus loads should be a high priority for reduction as they will be most amenable to management. Sub-catchment particulate phosphorus loads are most appropriately addressed by **land-use best practice** (McDowell 2010), improved **stormwater detention** (Nix et al. 1988) and **erosion control** (Stutter et al. 2008)"

G Tempero et. al 2015 – ERI Report 66

Table 1. Summary of annual phosphorus loading to Lake Rotorua, including estimated percentage range of anthropogenic total phosphorus reduction needed to achieve a TLI target of 4.2 (in parentheses).

	·	Annual loading t P y ⁻¹		
	Total	Anthropogenic	Baseline	
Dissolved reactive phosphorus	27.7	6.1	21.6	
Particulate phosphorus	21.0	17.3	3.7	
Total phosphorus	48.7	23.4 (43-64%)	25.3	

A train of P-loss Prevention and Mitigation tools Cost / Benefit Summary

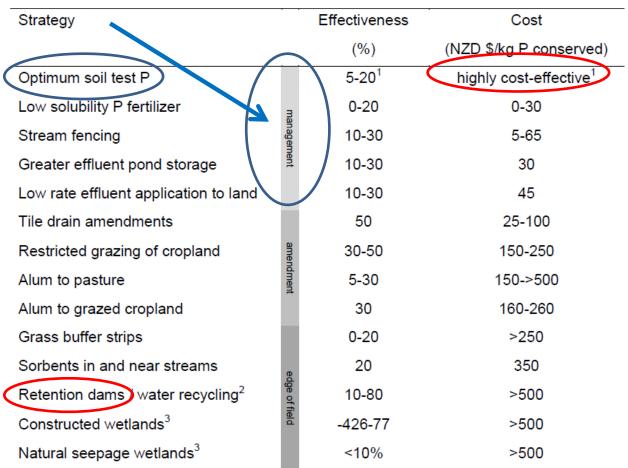


 Table 2. Summary of efficacy and cost of P mitigation strategies

¹ depends on existing soil test P concentration, but no cost if already in excess of optimum.

² upper bound only applicable to retention dams combined with water recycling

³ potential for wetlands to act as a source of P renders upper estimates for cost infinite.

From AgResearch R. McDowell, 2010

Accountable structure for GMPs integral with new Phosphorus Mitigation Project

- GMPs top of the list for both P-mitigation effectiveness and cost effectiveness
- An effective on-farm Environment Management System (EMS) can assure good uptake of GMPs
- Two NZ Ag Industry's have EMS type templates for managing the effective uptake of GMPs:
- DairyNZ Sustainable Milk Plans (SMP)

Beef + Lamb NZ – Land and Environment Plans (LEP) which also covers Deer Farmers

Sediment and nutrient highway

flow over usually dry paddocks

Ephemeral streams (overland flow)

The predominant pathway for P and sediment export from pastoral farmland to freshwaters

DBs occupy productive pasture paddocks "they are not a farm dam"

Kaharoa 2012, a DB empty in the LHS pic and still flooding in on the RHS pic

http://researchcommons.waikato.ac.nz/handle/10289/7993

The performance of Detainment Bunds (DBs) for attenuating phosphorus and sediment loss from pastoral farmland

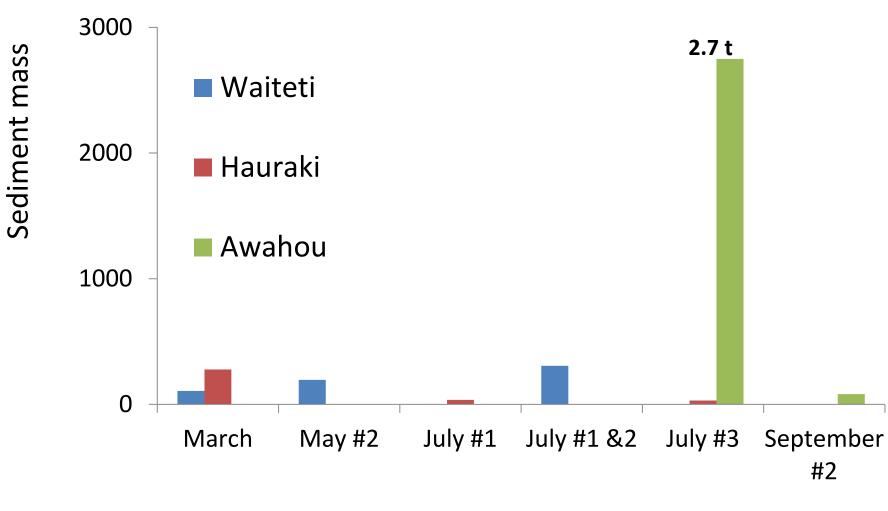
<u>Clarke, Dylan T.</u>

2013

Master of Science (MSc)

University of Waikato

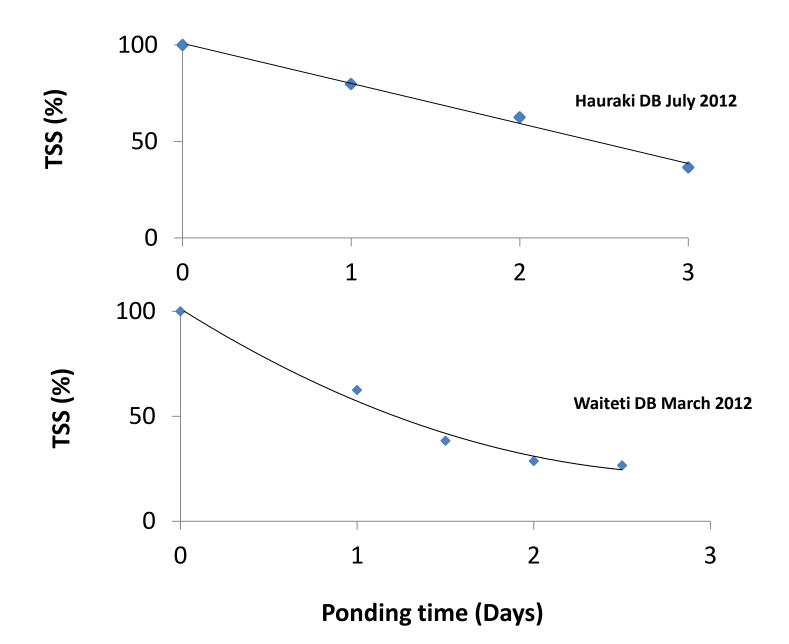
- Provided proof of concept
- "not sufficient for reporting purposes"



Particulate N

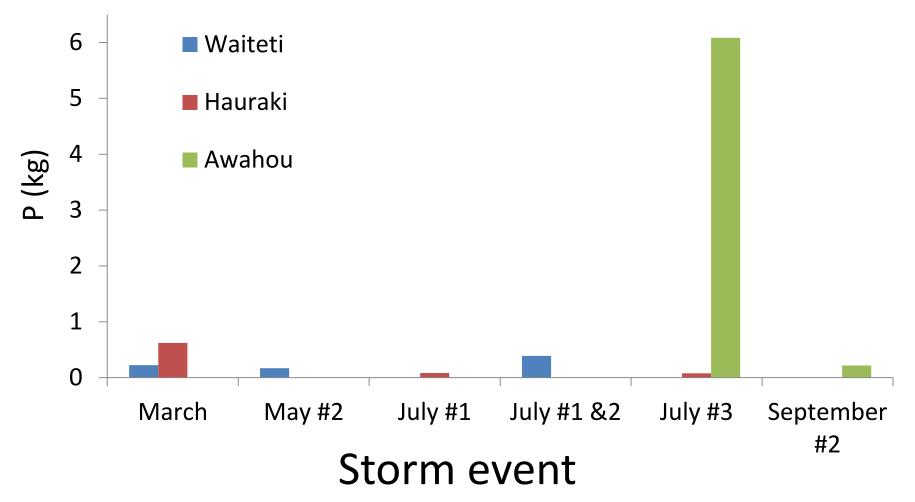
- In some cases, reductions in Particulate Nitrogen concentrations of outflow water were observed
- E.g. a 42% reduction in PN concentration over 20 hours
- Attributed to a recently grazed winter forage crop

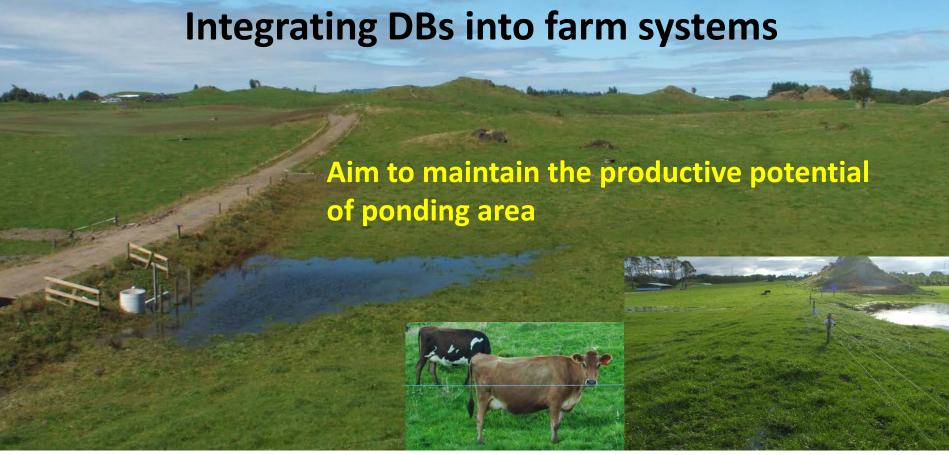
Sediment deposited



Storm event

2.7 t sediment deposited extreme case


Total Suspended Sediment (TSS)



P retained

Max: 6 kg P

Optimal ponding time is a compromise between:

- maximising water treatment
- maintaining pasture quality
- 3 days inundation has been tolerated by the Land Owner participants

Phosphorus Mitigation Project

- Aims to shift the knowledge from 'qualitative' to 'quantitative' credible for reporting.
- Learn how to best drive DBs (pre storm plugging, 120:1, 3 days ponding, post storm care, etc.)
- Emphasis on catchment BMPs (monitored via EMS's)
- MSc 5 data sets (1yr x 5 events x 3 sites)
- PhD 90 data sets (3yr x 5 events x 6 sites)
- Trial sites in 3 different catchments (select 6 from 20)
- Different farm types Dairy, drystock, Deer ? tbc.

Phosphorus Mitigation Project

- Full hydrological analysis of events at DBs
- Science Advisory Team finalizing methodology
- More automated monitoring / sampling
- Land owner practices / status of covers also monitored per event
- Near source dosing of flocculants (2 options)
- Additional features:
 - monitoring of e-coli (tbc)
 - subject to SAT and \$

Thanks again to the researchers and particularly the farmers for rising to the challenge of integrating DBs into their farming systems

Funding for the Phosphorus Mitigation Project approved by SFF 14/04/2016 Co-funders confirmed (others pending):

- Bay of Plenty Regional Council
- DairyNZ
- Ballance Agri-Nutrients
- Beef + Lamb
- DINZ
- Ecan

Start date 1st July 2016

4

Profitability. Sustainability. Competitiveness.