Progressing the Rules Lake Rotorua Stakeholder Group 23 June 2015

Methodology supporting the Nutrient Rules

UNCERTAINTY AHEAD

Context

StAG process to reach this point

- Approach is based on a methodology with points of certainty
- Start with numbers and then proportional approach

Land use	N yield	Original Area	Unmitigated N load	Mitigation	Incentives	Adj. N load	Attenuation	Non- mitigated Attenuated Ioad	Mitigated and Attenuated N Load	N load
	(kg N ha y ⁻¹)	(ha)	(kg N y ⁻¹)	(%)		(kg N y ⁻¹)				(%)
Bush and Scrub	3.7	9416.3	34558	0		34558	0	34558	34558	5.8
Crop	65.5	215.1	14098	17	1732	11674	28	10151	8405	2.0
Cut and Carry	15.1	315.3	4752	17	584	3935	28	3422	2833	0.7
Forestry	2.8	8869.1	24922	0		24922	0	24922	24922	4.2
Fruit Crop	11.9	31.4	373	17	46	309	28	269	223	0.1
Gorse	38.0	705.0	26790	100		0	28	19289	0	0.0
House	65.0	490.3	31869	0		31869	28	22945	22945	5.4
Lake or waterway	6.7	8173.7	54764	0		54764	40	32858	32858	9.2
Non-productive	3.0	477.3	1432	0		1432	0	1432	1432	0.2
Pastoral (Dairy Support)	36.8	2514.9	92477	17	11360	65214	28	66584	46954	11.0
Pastoral (Dairy)	71.3	5014.3	357325	35	90114	141057	28	257274	101561	23.7
Pastoral (Dry Stock)	21.1	13654.2	288008	17	35379	203100	28	207366	146232	34.2
Urban	3.0	3709.7	11129	0		11129	0	11129	11129	1.9
Wetland	0.0	234.4	0	0		0	0	0	0	0.0
							0	0	0	
Geothermal			33500	70		10050	0	33500	10050	1.7
							0	0	0	
Wastewater (Septic tanks @ 100 pp)			365	0		365	0	365	365	0.1
Wastewater (LTS load-to-lake)			30000	0		30000	0	30000	30000	5.0
Unspecified engineering reductions						-29760	0	0	-29760	
Total	344	53821	1006362		139215	594617		756063	444708	105

755 tonnes

- ROTAN 2011 steady state
- Calibrated to groundwater, stream and lake monitoring
- Uses coefficients
- Robust model

Nisource	Area ha	load tN/y (ROTAN 2011)				
N SOURCE	Aleana	current	reduction	target		
pasture	21175	526	270	256		
geothermal	59	30	30	0		
urban incl. sewage	3961	93	20	73		
forest	21182	75	0	75		
rain on lake	8079	30	0	30		
total	54456	755	320	435		

Integrated Framework

Component	Reductions in nitrogen loss
Engineering (Tikitere, sewerage)	50 tonne reduction
Rules	140 tonne reduction
Incentives Programme	100 tonne reduction
Gorse Programme	30 tonne reduction
Total	320 tonne reduction

Integrated Framework

- Based on ROTAN 2011
- Gives proportions of sector reductions: 35% from Dairy and 17% from Drystock
- Proportions from sectors for 140 tonnes (96 tonnes and 44 tonnes)

Social compact

435 tonnes

- Regional Policy Statement
- Comes from NIWA modelling in the 1980s (Rutherford et al 1989, and confirmed a number of times)
- High degree of confidence

Best Science/Good Data

- Self explanatory
- Implications for rules
- For example:
 - OVERSEER version management
 - Science reviews (commitment)

The Approach

- We recognise and acknowledge the uncertainty
- We have a good start point (755t)
- We have a good end point (435t)
- We have a social compact around the Integrated Framework
- We need to set a firm pathway in place to provide certainty to the pastoral sector

We need to start and review as we go.....

Allocation of Nitrogen Using OVERSEER 6.2

Current position

Dual sector averages (drystock 20.4 kgN/ha dairy 46.6 kgN/ha) with ranges:

- drystock range of 16-32 kgN/ha
- dairy range of 39-52 kgN/ha
 Delivers 35% and 17% sector reductions
 Standard reduction/clawback

NDA BM* -----lowerlimit -----upperlimit

OVERSEER version and allocation

- We have discussed NDA allocation using 6.1.3 data
- Files are being updated to 6.2
- 6.1.3 and 6.2: collectively improve drainage and soils (two critical elements for Rotorua)
- Allocation occurs through the rules

Proposed Position

Options to "fix" allocation: now or future

Now	Later 2017
Certainty for pastoral sector to begin planning	Updated versions
Incentives Board needs certainty to start	Property results may vary from current
Reference files approach	Winners and losers

• Preferred: Fix now at point rules are adopted using OVERSEER 6.2 on the basis that the integrity of the agreed allocation methodology is maintained.

NMP requirements

Schedule in Rules

- A NMPs prepared for farm property or a farming enterprise derived from an industry environment management programme
- B NMPs prepared for farm property or a farming enterprise that are not derived from an industry environment management programme.

Information

- Property details and map
- Benchmark
- Nitrogen budget (current system)
- Pathway to 2032 startpoint, interim planning targets (2022, 2027)
- Schedule of mitigation actions
- Phosphorus, fertiliser, effluent, gorse, irrigation management

Points defining the pathway

- Start Point (as previously defined)
- 2022

Interim Planning Targets

- 2027
- End point 2032 NDA

Implication is 5 year planning blocks

Purpose of NMP

- To confirm a pathway
- Schedule of mitigation actions
- Allow Council to track progress: farm has mitigation occurred?
- Allow Council to track progress: catchment

Implementation Plan

Rules Implementation Plan

- Supports staff implementing the rules
- Detail that is not suitable for the rules
- How things will be interpreted
- How details might be treated

For example, pre-BM environmental work

NDAs: Blocks or Sectors?

NDAs: Blocks or Sector

- Benchmark talked about in terms of a property
- But is the sum of the blocks
- BM to NDA modelling has been looked at in terms of sector land use
- Blocks within each property were aggregated into three major sectors (drystock, dairy and trees)

NDAs: Blocks or Sector

- NDA could be based on sector land use
- But blocks more pragmatic, obvious
- Allocation would operate the same way as benchmarking: blocks then sum to property
- "Actual nitrogen" for Incentives Scheme and trading

 Houseblocks will be separated out (to reflect septic tanks and gardens)

Preferred Approach

NDAs on a block basis

- Pragmatic, obvious
- Data management an issue either way
- "Actual nitrogen" transactions for Incentives Scheme and trading
- Same outcome (but doing more work to check this)

Grazing under trees....

Background

- OVERSEER concerned with whether animals are on a block rather than the land cover
- As a result, a number of tree/scrub covered blocks that have been classified as drystock or dairy because animals had access to these blocks during the benchmarking years
- Typically these blocks have low N discharges and under the proposed approach would receive windfalls.

The Numbers

Total area is 1114 ha
Total N discharge is 8427 kg N/yr
7.6kg N/ha/y

The Numbers

Options

- No change to current structure resulting in a 8.5 tonne windfall to farms on the basis that they were benchmarked that way
- 2. Reclassify these blocks as trees but leave the discharges on them so they get there BM value but no windfall
- 3. Reclassify as trees and remove discharges
- 4. Adopt some sort of case by case approach probably in combination with 2

Thank you, questions?

