Wastewater Strategy Study

Rotorua WWTP

25 June 2015

Kevan Brian

Scope of Works

- Identify the most appropriate treatment process for the WWTP to meet future nutrient limits of 30tN/yr and 3tP/yr.
- Study based on identifying a treatment process that will meet the proposed nutrient limits without any assumption of using TERAX or not
- Compare to other processes/ plant to validate likely performance
- CAPEX, OPEX and NPV

Project Drivers

- Ability to meet the mass discharge of 30tN/yr and 3tP/yr from the plant.
- Requires an average total N of 3.5mg/L
- Requires an average total P of 0.35mgP/L in future
- No clear bio solids drivers max dry solids and minimum volume assumed
- No disinfection standard but a likely requirement if final effluent is discharged to surface water – needs more investigation

Option Selection – Phosphorus Removal

Good nitrogen removal and biological phosphorus removal can be achieved in current plant(s)

Additional Carbon dosing is double the cost of Alum

Conclusion use chemicals to remove phosphorus

Option Selection – Filtration

- Bardenpho has high suspended solids in effluent (ave 23mg/L)
- These solids contain N & P about 7%N and 2%P
- If current performance is maintained then effluent TSS represents 10tN/yr and 3.65tP/yr
- Removing solids is essential if targets are to be met
- Best filtration (most solids removed) is via membrane filtration
 UF or similar

Conclusion filtration of final is essential to meet future limits – membranes will give highest TSS removal (smallest effective pore size)

- Many ways to remove nitrogen including current type of process
- Nitrogen removal efficiency of approx 93% needed to met new limits
- Can a secondary process achieve this or is a tertiary system needed
- Can the required level of N removal be achieved without tertiary treatment (other than filtration)?

Water Research Foundation (WERF) study "Quantifying Nutrient Removal Technology Performance"

Takes 22 of the best performing plants in US and compares N&P removal against, plant type and configuration

Plant	Configuration	Median TN (mg/L)	N Removal
Piscataway, MD (78,000m3/d)	Activated sludge and Tertiary Filters	3.00	86%
Eastern WRF, FL (64,000m3/d)	Bardenpho and tertiary Filters	3.64	90%
Parkway, MD (21,600m3/d)	4 Stage Bardenpho	3.40	88%
Rotorua WWTP (23,800m3/d)	?	3.50	93%

Secondary can meet limits proposed, however:

- Data presented by WERF is based on median (or 50% of the time) performance
- If higher levels of confidence are required say 90th percentile (i.e 90% of samples are less than) then tertiary process essential
- Secondary process considered suitable for limits proposed (i.e. ave or median of 3.5mgN/L)

Option Selection – Carbon Balance

Option Selection – Carbon Balance

Option Selection – Carbon Balance

- Potential to reduce ethanol use by 700L/d
- Reduce sludge production by 40%
- Consequence is that there are more solids in secondary reactor (Bardenpho)
- Unlikley that clarifiers will have sufficient capacity to handle increased flow and increased solids.

Process Selection

Given that:

Phosphorus removal is via chemical means

- Filtration is essential
- Single stage process can achieve standards
- Can make better use of carbon but this would means clarifiers of Bardenpho over loaded
- Disinfection likely to be required

Process Selection – Full MBR

Ideal Process is:

- Bypass of primary tanks
- Conversion of Bardenpho reactor to MBR and modify aeration
- Dewater Biosolids and remove from site either as a "cake" or destroy solids via TERAX

Standards for disinfection unknown but UF will remove bacteria

Process Selection

Performance of MBR (current) with respect to indicator organisms:

Median FC – 0FC/100mL

□ 95th % ile FC – 14FC/100mL

Median E. coli – 0/100mL

95th % ile – 6/100mL

CAPEX - \$21 Million inclusive of dewatering and alum dosing
 CAPEX -\$32.8 Million with non works costs and contingency

Greg Manzano to present OPEX costs

