

Landowner economic, employment and environmental benefits via bioenergy

Brian Cox Executive Officer, Bioenergy Association of New Zealand

Bioenergy Association

- Represents all leading NZ bioenergy sector players
- 3 Interest Groups
 - Biogas
 - Liquid Biofuels and Co-products
 - Wood Energy
- Bioenergy supplying 10% of energy used in NZ
 - Potential to do much more
 - Well established conventional technologies
 - Platform for new advanced biofuel technologies and co-products
- Leading implementation of the Bioenergy Strategy
 - Achieving economic, employment and environmental benefits
- Membership based organisation
 - Quality Framework Registered Wood Energy & Biogas Advisers
 - Training and Technical Guides
 - Workshops and conferences
 - Promotion of member's products and capabilities

Messages for landowners

- Landowners can produce revenue from energy or bio-based products.
 - Wood energy from retired agricultural land & shelterbelts
 - Biogas initiatives can integrate with existing farm activities
 - Longer term production of transport biofuels
- Energy + multi new business products
 - Heat
 - Bio-based polymers
 - Embedded electricity
- Economies of scale require collaboration
- Bioenergy is often a niche opportunity
- Technologies are proven and produce revenue

The start of a new era

- The energy drivers
 - Pre 19th Century The charcoal era
 - 19th Century the coal era
 - 20th Century the petroleum era
 - 21st Century the start of the bioeconomy
- The economic opportunities
 - New bio-based products
 - Additional value from wood and waste
 - Turning opportunities into \$\$\$\$

The bioenergy market

- Wood fuel production for heat
 - Wood chips / general wood fuel
 - Wood pellets

Liquid biofuels production and use

- *Current* bioethanol from whey; biodiesel from canola, UCO, tallow
- Future bio-oil from algae, biodiesel & bioethanol from woody material,
- Biogas production and use
 - Waste water and municipal waste
 - Animal and food waste

Feedstocks

- Forest harvest residues
- Wood from woodlots or shelterbelts
- Horticultural thinnings and prunnings
- Dairy effluent
- Reject fruit and vegetables
- Food processing residues
- Agriculture crops
- Animal fats
- Biogas

Basically any organic matter

Dairy farm benefits

- Waste disposal
- Small scale solutions think local/act local
- RMA waste mitigation key driver
- Integrated opportunities for coproducts
- Production of high grade farm fertiliser
- On site heat
- Reduce environmental impact
- Reduced peak electricity demand charges
- Enhance milk quality
- Reduce energy cost energy intensive

Co-products to existing business

- Farming livestock + shelter trees
- Forestry logs, lumber + wood fuel
- Horticulture crop + disposal of thinnings
- Dairy milk + disposal of effluent
- Cropping cereal + rape
- Food processing food + revenue from residues
- Horticulture crop + use of spare land
- Farming livestock + use of steep slopes

Involves thinking differently

- Focusing on additional value from farm residues (often wasted)
 not just energy
- Energy is the pathway
 - not the end point
- Environmental solutions
 - Waste reduction
 - Reduce nutrient runoff
 - Air emissions reduction
- Green business growth
 - not greening growth

The post petroleum era

Fits within Government Business Growth Agenda

New Zealand Energy Strategy 2011-2021

Developing our energy potential

- Developing NZ's renewable energy opportunities
- Government endorsement of the Bioenergy Strategy
- Embrace new energy technologies
- Reduce energy related emissions of greenhouse gas's
- Secure and affordable energy
- Heat Sector Objectives and Targets
 9.6PJ
 - Encourage greater diversity of transport fuels

A platform for us to make money from farm residues

Achieving economic, employment and environmental benefits via bioenergy

NEW ZEALAND BIOENERGY STRATEGY

This Strategy will realise :

- economic growth, employment and regional prosperity;
- Supplies 25% of the country's energy needs,
- Supplies 30% of transport fuels, by 2040;
- based on existing capability in forestry, wood processing and converting organic by-products to energy
- Takes NZ into a post petroleum era

A \$6 billion sector

The Bioenergy Strategy will

- Provide additional revenue streams for land owners
 - Economic growth from improved land use and use of residues
 - Increase business resilience and wealth obtainable from diversified land use
- Use bioenergy as a leader into the wealth potential of the wider bio-economy
 - Production of value added bio-materials
- Increase the utilisation of residue so that waste is reduced and environmental outcome maximised
 - Reduce environmental impacts to air, soil and water
 - Enhance the quality of New Zealand's 'Green Image'

What is biogas production

Biogas production using anaerobic (oxygen free) digestion

- is a biological treatment process of organic matter
- to reduce odor,
- produce energy and
- improve the storage and handling characteristics of manure.

Products

- Biogas for heat
- Feedstock for biobased materials
- Fertiliser
- On farm vehicle fuel
- Farm residue utilisation
- Farm environmental management

The biogas opportunity

Benefits of biogas production for farmers

- New business opportunities
 - New products
 - Building on existing capabilities, infrastructure, and staff
 - Export of biogas production capability/skills
- Business resilience
 - Cost stabilisation
 - High quality fertiliser production
- Using organic production residues
 - Revenue from production residues
 - Reduce waste disposal costs
 - Co-product with biochemicals
- Green growth
 - New products based on sustainable resources
- Leading into the bioeconomy

Biogas in NZ

- New Zealand has:
 - Long history of biogas related developments
 - An extension of existing agricultural and process industries
 - Experienced biogas consultants
 - Innovation and leading edge solutions attracting world attention
 - Successful niche applications
- Fewer farm applications than in 1985
- Focus has been on production of biogas from landfill and food processing applications
- Resurgence of interest in farm applications
 - Larger herds
 - Increase of use of feedpad and stand-off pads

NZ already a leader in biogas

4.6PJ across NZ cf 5.5PJ residential natural gas use (2009)

Range of technology options

Covered pond systems

Dairy Farm with anaerobic digestion

Scenario:

Milking 1000 cows on 350 hectares (effective) producing 170,000kg milk solids Central Bay of Plenty - rolling country with peripheral steep country Seasonal milk supply Installation of anaerobic digester for gas production (can use effluent from neighbouring property) Methane gas cleaned and fed into a gas engine for electricity production Additional digester feedstock available in the off season (neighbours piggery waste and crop)

Biogas Output

400 Biogas volume (m³/wet tonne) 300 200 100 0-Constury Pigstury Pigstury Vegetable Waste Mangold Corn slage stage to and totalion Standard deviation

Co-digestion of waste + industrial feedstocks improves yield

The energy economics

Co-	Cattle	Energy	Construc	Industrial	Industrial	Manure	Annual	Simple
digestion	milked	price	- tion	Waste	Waste	convey-	Power	payback
Plant	(hd)	(\$/kwh)	costs	added	gate fee	ance fee	Production	period
			(M \$NZ)	(t/day)	(\$/t)	(\$/year per hd milked)	(kwh/year)	(Years)
Municipal digester upgrade	0	Spot market	2 - 3	10 - 20	30	0	5,600,000	5 - 7
Dairy Farm cluster	7500	0.15	1.6	0	0	30	317,293	15-16
Dairy Farm cluster	7500	0.15	1.6	5	0	30	609,793	11-12
Dairy Farm cluster	7500	0.22	1.6	5	0	30	609,793	8 - 9
Dairy Farm cluster	7500	0.22	1.6	5	30	30	609,793	7 - 8
Regional Digester	0	0.15 (diesel)	5 - 6	10 - 20	80	0	Heating fuel,	3-4
Facility,				80 - 90				(13 – 14,
Pork				(piggery)			6,000,000	no co-
Industry								digestion)

Source; Jurgen Thiele, Case Study: Biogas from farm wastes and agro-industrial biosolids. Presentation to BANZ conference 2013

Fertiliser product

Source: Jurgen Thiele BANZ conference 2010

The value of fertiliser

Example of relative product values from food processing AD facility

Process Options	Tipping fees	Electricity sales	Fertiliser sales	Operating cost	"EBITDA"				
5% contam.	11.1	4.5	2.3	9.4	8.5				
0% contam.	3.8	5	2.6	8.8	2.6				
35% contam	14.6	3.8	2	14.3	6.1				
Europe (2002)	39.2	4.5	0 (Compost)	9.4	34.3				
Figures are percent of capital cost "EBITDA" Earnings Before Interest, Tax, Depreciation, Amortisation.									

Source: Jurgen Thiele, BANZ conference 2010

Km travel per hectare – Land efficiency

Source: www.biodieselnow.com/forums/t/19315.aspx

Methane to plastics

Biodegradable plastics from waste biogas (methane) that are economically competitive with conventional oil-based plastics.

The heat market

- An opportunity to develop a wood fuel business
- Leads to future biofuel and bioproduct markets
- Uses proven technology
- 10-15% of wood production is currently wasted
- Demand from heat plant owners exists
- Yet the wood fuel market is currently poorly developed
 - Quality of wood fuel
 - Reliability of supply
 - Long term contracts

Demand for heat

- NZ total consumer energy
- Industrial heat
 - Pulp and paper 54 PJ (32%)
 - Food processing 30 PJ (18%)
 - Chemicals 21 PJ (12%)
- Heat plant (6200 MW_{th})
 - Wood processing 1,798 (29%)
 - Dairy processing 1,860 (30%)
 - Other sectors: meat processing (496), hospitals (496), glasshouses (186), education (310)

537 PJ 168 PJ

More than logs from forestry

Re-establish shelterbelts on dairy farms to be multi-functional

- Production of bioenergy co-products for increased farm income.
- Provision of shelter for stock.
- Increased pasture production.
- Improved water use efficiency.
- Increased functional biodiversity.
- Improved public perception of dairying.

Using shelter as a crop

The demand for wood fuel

- Wood fuel
- Sourced from wood processing plant or forest residues
- High quality wood pellets, quality chip unsorted forest residues
- Uses
- Heat
- Electricity generation
- Production of transport fuel (ethanol, bio-oil, biodiesel)

Short rotation crops

Advanced biofuels

- Uses waste or co-product with wood processing
- Lots of technologies being developed internationally
- Economic in 5-10 years
- Resources for advanced biofuels are near unlimited
- Wood produce more GJ per ha than oil / seed / nut crops
 - Canola to biodiesel = 1265 litres/ha/pa
 - Wood to diesel = 2470 litres/ha/pa
- A drop in fuel

High Value Products: Multiple applications

Xylose

<u>\$1.5B Market</u>

- Food Additives
- Xylitol
- Personal Care Products
- Pharmaceuticals

Lignin

\$64B Market

- PVC Additive
- Adhesive & Epoxy Resins
- Polyurethane
- Carbon Fiber

Cellulose/Ethanol

<u>\$35B Market</u>

- Transportation Fuels
- Fuel Additives
- Solvents
- More Economical Feedstock for Pulp & Paper plants

A serious business decision for farmers

- By extracting additional value from organic wastes, and diversified land use
 - Proven technology and we have the expertise
- Leading to new business opportunities
 - Economic and employment value from under-utilised dairy effluent
 - Increased value to farmers from biogas as bioenergy and as a feedstock for biomaterials
- Waste reduction > value of energy + coproducts
 - Clean integrated solutions for rural applications
 - A tool for environmental land management
- Requires
 - Requires application not R&D,
 - Drive and champions
 - Economies of scale from working together
 - Development of tools and Technical Guides to reduce development costs

