

Principles from the P21 research programme into lower N input dairy systems

Mark Shepherd AgResearch, Ruakura

What the investors wanted from P21

"Industry accessible, adoptable, systems-level solutions for profitably increasing production while reducing environmental footprint, that have been field tested for demonstrable efficacy and value."

Pastoral 21

- Next generation dairy systems
- Mixed livestock systems
- Breakthrough technologies
 - feed
- Breakthrough technologies
 - environment

Common features of farmlets

- Comparison of farm systems:
 - 'Current'
 - 'Future'
- Pre-experimental modelling to design systems and set hypotheses
- Only 5 years in the future
- Not major changes have to be adoptable
- Common data collection
- Farmer Reference Groups
- Separately funded co-development programme to drive uptake of findings

Proposed solutions

Common themes:

- Decrease in N fertiliser inputs compared with the regional norm Adjusted stocking rate in line with reduced N input
- Managing urine deposition during the autumn/winter period.

Measuring N leaching

Porous cups

Soil sampling

- No simple answer
- All have pros and cons
- Many are soil-type specific
- A mixture of measurements and modelling is likely to provide the most robust assessment

Modelling in P21

DNZ Whole Farm model

Overseer

- Framework of process based models
- Including economics
- Used for
 - Detailed pre-experimental modelling
 - Setting hypotheses
 - Systems evaluations as the experimental programme progresses

- Simpler representation of the systems
- And simpler to use
- Does not include economics
- Used for:
 - Assessing N leaching for the systems
- P21 provides new experiments for evaluating Overseer

Farmax

Models feed supplies

Waikato: testing the concept on two - 13 ha farmlets

	Current	Future
Stocking rate (cows/ha)	3.2	2.6
Cow genetic merit (BW)	156	225
Replacement rate (%)	22	18
N fertiliser (kg N/ha)	Up to 150	Up to 50
Nitrification inhibitors	No	Yes (now No)
Standoff- urine collected	No	Yes
Grain feeding (kg/cow)	0	Up to 400
Effluent applied (% of farm)	23	50

Canterbury: testing the concept at LURDF

Milking Platform Wintering system 1. Low • High BW cows Kale sown early December • Fed with green chop oats • 3.5 cows/ha **Stocking** • 150 kg N fertiliser/ha/year Followed by oats crop **Efficient** 100 kg grain/cow Diverse pastures (LSE) 2. High • High BW cows Fodder beet sown October **Stocking** • 5.0 cows/ha Fed with grass silage **Efficient** • up to 400 kg N/ha/year • up to 800 kg grain/cow (HSE)

What have we learnt?

- The systems work
- Nothing radical about them
- Our models capture the principles

1. Production and profit were maintained with fewer inputs

- More production per kg of liveweight
 - More per cow per day,
 - More days in milk
 - Used N fertiliser to fill deficits, not boost surpluses
 - Applied well-known principles of pasture management and grazing
- By cutting costs: fewer cows, fewer inputs
 - Lower replacement rate
 - Gains from saved inputs offset extra Standoff costs

2. Large reductions in N leaching were achieved

- Demonstrated through measurement and modelling
- Generally, results matched with preexperimental modelling

Year	NO ₃ -N (kg N	P value	
	Current	Future	
2012	50	22	< 0.01
2013	67	38	< 0.01
2014	63	42	< 0.05
Mean	60	34	

3. Reductions in N losses were achieved by:

- Decreasing fertiliser and purchased supplement inputs
- 2. Adjusting stocking rate to match feed demand and the change in feed supply

3. Reductions in N losses were achieved by:

3. Standing cows off paddock for periods of the day and year

4. Safe and effective recycling of the resultant effluent

	'Current'	'Future'
N fertiliser on pasture (kg N/ha/yr)	137	46
Effluent applied (% of farm)	23	50
Effluent applied (kg N/ha/yr)	9	19

4. Standoff plays a role

- For N, by decreasing urine N load on paddocks – less to leach
 - Modelling (Waikato)
 suggested a 50-50 split
 between lower N inputs
 and stand-off
 - May vary with season

 For P and sediment, to protect wet soils from damage and runoff

Conclusions

- Modified farm systems work
- More success with footprint than with \$
- Based on known scientific principles
- Many of the tools for managing these systems are available
- Changes are based on incremental advances in science
- BUT (a) a good level of management is needed and (b) still some refinement in some aspects of management to tease out/develop

Acknowledgement - This work was conducted through the Pastoral 21 Environment Programme (C10X1117), jointly funded by MBIE, DairyNZ Inc., DCANZ, Fonterra and Beef + Lamb New Zealand.

What is 'low N'?

Parameter	Baseline 50 kg N	90 kg N	120 kg N
Pasture yield t DM/ha/yr	15.3	15.6	16.1
Silage fed kg/cow/yr	468	600	708
Grain fed kg/cow/yr	161	111	102
Days in milk	248	251	253
MS kg/ha	1069	1105	1133
N leaching (% of base)	100%	102%	108%