Workshop with TAG

<section-header><list-item><list-item><list-item><list-item><list-item><list-item>

Project Drivers

- Ability to meet the mass discharge of 30tN/yr and 3tP/yr from the plant.
- Requires an average total N of 3.5mg/L in future (4.1mgN/L now)
- Requires an average total P of 0.35mgP/L in future (0.4mgP/L now)
- No clear bio solids drivers max dry solids and minimum volume assumed
- No disinfection standard but a likely requirement if final effluent is discharged to surface water

Current treated Wastewater Quality (29/5/12 to 21/5/15)

Bardenpho				
Parameter	Units	Mean	Median	
COD	mg/L	44	38	
Suspended Solids	mg/L	23	19	
Total Phosphorus	mgP/L	3.42	3.21	
DRP	mgP/L	2.48	2.48	
Total Nitrogen	mgN/L	6.18	5.13	
Total K Nitrogen	mgN/L	2.61	2.24	
Ammonia Nitrogen	mgN/L	0.33	0.08	
	mgN/L	2.04	1.57	
Nitrate MBR Parameter	mgN/L Units	2.04 Mean	1.57 Median	
MBR				
NBR Parameter	Units	Mean	Median	
MBR Parameter COD	Units mg/L	Mean 17	Median 16	
ABR Parameter COD Suspended Solids DRP	Units mg/L mg/L	Mean 17 <1	Median 16 <1	
MBR Parameter COD Suspended Solids	Units mg/L mg/L mgP/L	Mean 17 <1 1.43	Median 16 <1 1.2	
ABR Parameter COD Suspended Solids DRP Fotal Nitrogen	Units mg/L mg/L mgP/L mgN/L	Mean 17 <1 1.43 3.91	Median 16 <1 1.2 3.14	

Option Selection – Phosphorus Removal

- Good nitrogen removal and biological phosphorus removal can be achieved in current plant(s)
- Both N & P removal has not been consistently achieved at same time
- N&P removal compete for carbon: need COD:N ratio of >15 in influent (currently 11:1)
- Could dose more carbon to remove P or dose Alum
- Additional Carbon (acetic acid) is double the cost of Alum

Conclusion use chemicals to remove phosphorus

Option Selection – Filtration

- Bardenpho has high suspended solids in effluent (ave 23mg/L)
- □ These solids contain N & P about 7%N and 2%P
- If current performance is maintained then effluent TSS represents 10tN/yr and 3.65tP/yr
- Removing solids is essential if targets are to be met
- Best filtration (most solids removed) is via membrane filtration
 UF or similar

Conclusion filtration of final is essential to meet future limits – membranes will give highest TSS removal (smallest effective pore size)

Option Selection – Nitrogen Removal

- Many ways to remove nitrogen including current type of process
- Nitrogen removal efficiency of approx 93% needed to met new limits
- Can a single stage process achieve this or is a tertiary system needed
 - Tertiary system has better efficiency as this uses a multiplier effect
- Can the required level of N removal be achieved without tertiary treatment (other than filtration)?

<section-header><list-item><list-item><list-item>

Option Selection – Carbon Balance

- Availability of COD essential to getting low N
- Current plant removes 40% of COD in primary and removes this from site (via dewatering)
- TERAX concept is to use this sludge to produce vfa and reduce ethanol consumption
- U Why remove all this COD and "waste" its value?
- Option to bypass primary treatment and make most use of COD in wastewater – this reduces ethanol and reduces sludge production overall

Option Selection – Carbon Balance

- Potential to reduce ethanol use by 700L/d
- Reduce sludge production by 40%
- Consequence is that there are more solids in secondary reactor (Bardenpho)
- Unlikley that clarifiers will have sufficient capacity to handle increased flow and increased solids.
- Could add more clarifiers
- □ Consider alternatives?

Process Selection

Given that:

- Phosphorus removal is via chemical means
- □ Filtration is essential
- Single stage process can achieve standards
- Can make better use of carbon but this would means clarifiers of Bardenpho over loaded
- Disinfection likley to be required

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

Process Selection Membranes – assumed GE ZeeWeed (as per existing) 40 Cassettes (currently there are 8) in four "trains" of 10 Peak flow (Bardenpho only) – 805L/s – all trains or 604L/s with one train out Peak flow Bardenpho and Side stream MBR – 935L/s or 735L/s with one train out

Mott MacDonald

