Workshop with TAG Alternative Land Treatment Sites

28 May 2015

Scope of Works

- Identify potential sites for discharge of treated wastewater in the Rotorua Lake Catchment.
- Establish size and expected nutrient removal performance
- Establish land use of alternatives
- Scope and recommend the preferred discharge methodology
- Scope and size transfer main and pumping system options
- Establish site layouts and details
- □ CAPEX, OPEX and NPV
- Identify risks, construction & commissioning requirements, further investigative works

Kevan Brian

Mott MacDonald

Alternatives Assessed

Option	Name	Description
4	Dual Discharge	Discharge of one third of the total treated wastewater from the Membrane Bio-reactor to water with the remaining flow discharged to land
5	Total Discharge	Discharge of the entire treated wastewater to a new alternative land site within the catchment

Mott MacDonald

□ For both options, the discharge limits are set at 30T of nitrogen and 3T of phosphorus per annum

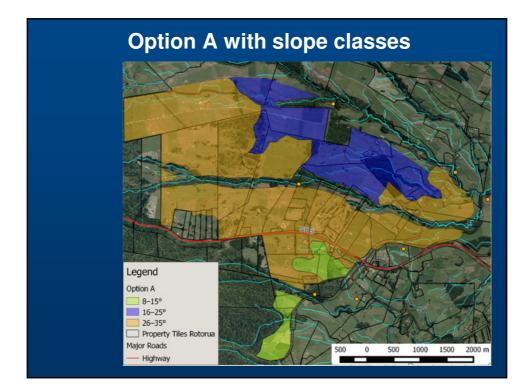
Option	Discharge	Annual Average Daily Flow (m³/day)	Land area (ha)	Application Rate (mm/day)
4 Dual		16,510	360	5
5	Total	23,810	500	5

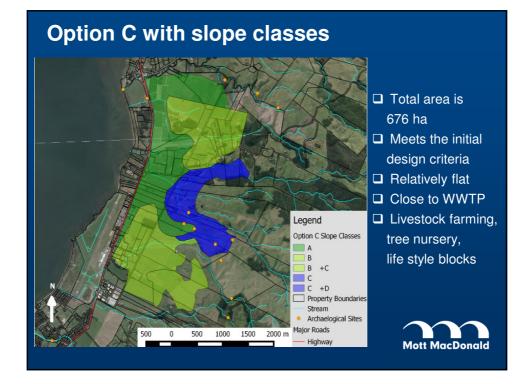
Nitrogen Loading

- □ Nitrogen in (combined) wastewater from plant 5.9mgN/L
- Over 500ha this is a loading rate of 105kgN/ha/yr
- Taupo LTS consented loading rate is 650kgN/ha/yr for cut and carry
- □ Most of the N removal "work" done at the treatment plant
- Significant P removal required by LTS

Preliminary GIS Mapping Constraints

Parameter	Limit/Constraint
Slope	< 20°
Soil	Well to moderately drained
Flood return – Lake Rotorua	Not within 1:20 FRI and landward SH30
FRI – rivers and streams	Flood class 1 to 3 (< 1:20 FRI)
Distance WWTP	Within 10 km of WWTP
Urban areas	Exclude




Option A

- Outside of 10km distance from WWTP
- □ Total area is 1,082 ha
- 300 ha meets initial design criteria
- > Note: Option 4 requires 350 ha while Option 5 requires 500 ha
- □ Area restricted by:
 - > Volcanic mound formations (granite) and
 - River valleys
 - ➤ Steep
- Currently livestock farming/forestry and some patches of significant natural forest

Option	Nitrogen	Phosphorus
4	12.03 T requires removal	15.6 T requires removal
5	17.35 T requires removal	22.6 T requires removal
Assumptions	 100% removal of ammoniacal-N 100% particulate organic N 60% soluble organic N 	Assume for P: 100% particulate organic P 87% soluble organic P
Summary	Consent limit would be achieved.	 Likely to meet consent limit. If not, dose with alum at the plant to offset

Infrastructure Requirements								
Option	Irrigation Method	Land Area (ha)	Total Head (m)	No. of Pumping Stations	Transfer Main Length (m)	Pumping Head (m)	Holding Ponds (m³)	
A (4)	Fixed sprinkler	350	202	3	17,060	202	28,000	
A (5)	Fixed sprinkler	500	195	3	17,060	195	40,000	
B (4)	Fixed sprinkler	350	137	2	9,670	137	28,000	
B (5)	Fixed sprinkler	500	133	2	9,670	133	40,000	
C (4)	Pivot	350	45	1	8,610	45	28,000	
C (5)	Pivot	500	41	1	8,610	41	40,000	

Summary							
Note: Cost Option	estimates in Land Area (ha)	clude land acquisi CAPEX (\$M)	tion and profess OPEX (\$M)	sional fees. NPV (\$M)	Key Risks		
A (4)	350	83.0	2.02	93.7	Geotechnically challenging.		
A (5)	500	102.4	2.73	118.8			
B (4)	350	54.9	1.53	64.9	High no. of streams, hilly, comple irrigation arrangement.		
B (5)	500	69.2	2.07	83.7			
C (4)	350	56.9	0.82	56.4	Sandy soils, proximity to Lake		
C (5)	500	73.3	1.04	72.4	Rotorua, likely to have relatively high land value.		

