

Profitability. Sustainability. Competitiveness.

The Rotorua P-Project

Summary for the Lake Rotorua Stake Holder Advisory Group

Attenuating nutrient and sediment loss from pastoral farmland during storm water runoff events

Prepared by John Paterson

Acknowlgements:

D Clarke, D Hamilton, J Abell, R Moore, M Scarsbrook, K Thompson, A Bruere, J Peryer-Fursdon, O Parsons.

18 DBs courtesy of Farmers:

J&C Paterson, N Saville-Wood, M Lealand, D Reeves, T&M Cairns, S Morrison, Waitetī Trust & M Scott, M Lane & Landcorp, P&G Schweizer, M&J Pudney

Water Quality Drivers

Water quality can be either nitrogen (N) limited or phosphorus (P) limited or limited by both. Nutrient-loss from land use activities has two distinctly different transport processes:

- N (leaching) and P (runoff)
- P-Project focus on the P-loss sources and transport mechanism
- Runoff events during high intensity rainfall

Ephemeral storm water flow

Pic courtesy of Mark and Sophie Dibley

Lots of water runs off during heavy rainfall

Pic courtesy of Daniel and Kim- Hauraki sub-catchment, Kaharoa

Sediment and nutrient highway

flow over usually dry paddocks

Why bother taming floodwater?

How much P delivered in storm water?

- Sampling of streams during floods (NIWA 2008)
- Sum of P-load of storm sampled permanent streams = 9.6T
- 25% of the catchment only has no permanent streams (not sampled)
- Storms deliver > 12 T P per year in just a few events per year

How can we intercept this load of P in storm water?

- Key to influencing P in storm loads is not at the lake edge
- Manage near the source rather than near the destination
- On-farm ephemerals, where runoff is first apparent.

The challenge

- Best suited sites for detaining storm water are in the upper catchments
- Usually the best paddocks on the farm!
- Who would want to detain flood water on their best paddocks?

P-Project Objectives and Outputs

Objective

• to identify and implement practical, durable and cost effective pastoral-based P mitigation in the Lake Rotorua catchment over five years

Outputs

- Desk-top analysis report on P-mitigation opportunities
- Funding criteria and mitigation approval process
- Stakeholder meetings with sub-catchment groups and one-to one landowner liaison
- Multiple landowner agreements and physical mitigation implementation with up to 5 structures completed in Year 1
- Annual progress reports, including estimates of P mitigation efficacy individually and collectively (as science permits)

1st Task – What are the P-mitigation opportunities?

A train of P-loss Prevention and Mitigation tools Cost / Benefit Summary

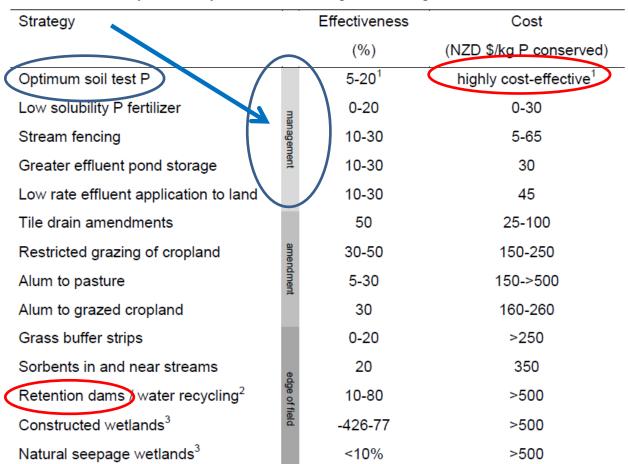


 Table 2. Summary of efficacy and cost of P mitigation strategies

¹ depends on existing soil test P concentration, but no cost if already in excess of optimum.

² upper bound only applicable to retention dams combined with water recycling

³ potential for wetlands to act as a source of P renders upper estimates for cost infinite.

From AgResearch R. McDowell, 2010

Good Management Practices

- GMPs top of the list for both P-mitigation effectiveness and cost effectiveness
- An effective on-farm Environment Management System (EMS) can assure good uptake of GMPs
- Two NZ Ag Industrys have EMS type templates for managing the effective uptake of GMPs:

DairyNZ – Sustainable Milk Plans (SMP)

Beef + Lamb – Land and Environment Plans (LEP)

Rotorua Soil Class		Soil Series Name	ASC	Topsoil bulk density (g/cm³)	Topsoil Clay content	Dairy Optimal Range Olsen P	Drystock Economic Range Olsen P*
Pumice							
Typic Orthic	Qt	Oturoa sand		1.18			
Pumice Soils	QtH	Oturoa hill soils	87%	g/cm³	2 - 6%		
Typic Orthic	Or	Oropi		1.18			
Pumice Soils		Oropi hill soils	51%	g/cm³	5 – 10%	40 – 45	15 – 30
Typic Orthic	Rt	Rotoiti		1.18		(35-40 Steeper)	
Pumice Soils	RtH		51%	g/cm³	3 - 8%	(DG 35-40)*	(DG 25 - 30)*
Immature Orthic	Wh	Whakarewarewa		0.91			
Pumice Soils			51%	g/cm³	10 – 15%		
Podzols		1		1			
Humose Orthic	No	Ngongotaha loamy		1.18			
Podzols		sand	42%	g/cm ³	5 - 10%		
		Ngongotaha hill soils		3.0	15 - 20%	40 – 45	15 – 30
Typic Orthic	w	Waiteti loamy sand		1.18	5 - 10%	(35-40 Steeper)	
Podzols		Waiteti hill soils	42%	a/cm ³	10 - 15%		
HumicOrthic	Mg	Mangowera sandy loam		1.09			
Podzols			42%	g/cm ³	10 – 15%	(DG 30-40)*	(DG 20 - 30)*
Typic Orthic	Na	Ngakuru sandy loam		0.78		(0000040)	(2020 00)
Allophanic	NaH	Ngakuru hill soils	83%	g/cm³	10 – 18%		
Organic	1	1					
Mellow Humic	Ut	Utuhina peaty loam		0.18		40 – 45	15 - 30
Organic Soils			62%	g/cm³	5 - 10%	(DG 35 - 45)*	(DG 25 – 35)*
Recent	1	1		1			
Typic Tephric	R	Rotomahana		1.09		40 – 45	15 – 30
Recent Soils		R sandy loam	32%	g/cm ³	10 - 20%	(35-40 steeper)	
		R silt loam		_	20 -25%		
Mottled Tephric	Wa	Waiowhiro	32%	1.18		(DG 30 - 40)*	(DG 20-30)*
Recent Soils				g/cm³	2 – 5%		
	Oks	Okareka	32%		20 - 30%		

Table 1 Estimated relative pasture production at Olsen P (0–75 mm, μ g P cm⁻³ dried and sieved soil) levels of 25 and 50 and critical level required to achieve 97% maximum production, for the major soil groups in New Zealand (numbers in brackets are the confidence intervals (*P* < 0.05)).

	Relative past	Critical		
Soil group	Olsen P 25	Olsen P 50	level	
Pumice	▶ 89 (88–91)	97 (95–98)	50 (43-61)	
Volcanic	92 (88–94)	99 (98–100)	32 (27–38)	
Peat ¹	95	99	40 (35–45)	
Sedimentary	95 (93–97)	100	30 (26-32)	
Recent soils	97 (96–98)	99 (98–100)	25 (20-30)	
Podzols	▶ 96 (94–99)	100	25 (22–30)	
Sands	100	100	12 (10–15)	

Consensus on OlsenP ranges Simplified Table

	Dairy	Drystock
	Optimal Range	Optimal Range
Soil Class:	(Olsen P)	(Olsen P)
Pumice,	40 – 45	15 – 30
Podzols,	steeper land 35- 40	
Recent	(DG 30 – 45)*	(DG 20 – 35)*

Optimal OlsenP survey participants July 2010:

- agKowledge V. Fulton, D. Edmeads
- Perron Ag Consultants Lee Matheson
- AgFirst Mark MacIntosh,
- Headway Simon Park
- BOPRC D Guinto, A. McCormack, S Stokes

* (DG) refers to results reviewed by Dani Guinto (DG), Soil Scientist BOPRC

Ephemeral streams (overland flow)

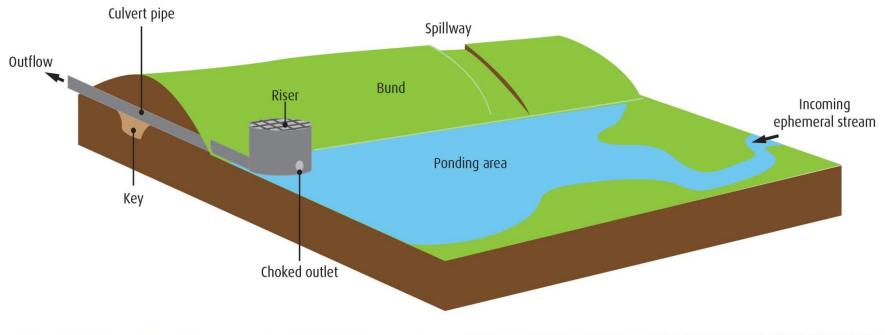
The predominant pathway for P and sediment export from pastoral farmland to freshwaters

DBs on usually dry paddocks

Kaharoa 2012

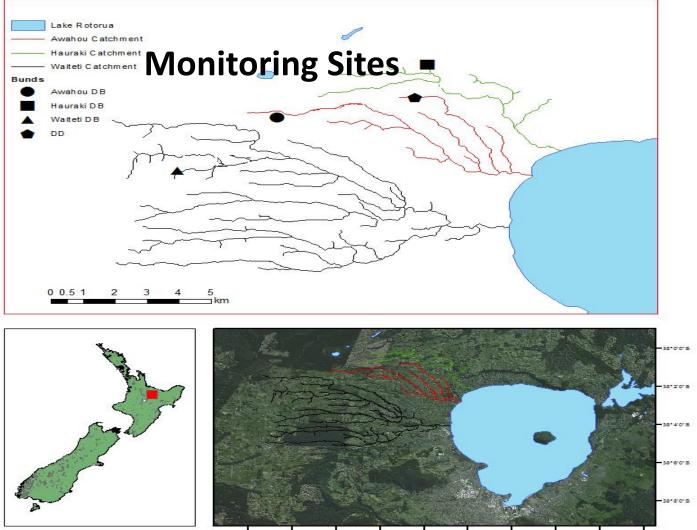
Detention Dams - built in Rotorua since 1970's

Detainment Bunds - very similar plus P-loss focus



Detainment Bunds – Key Features

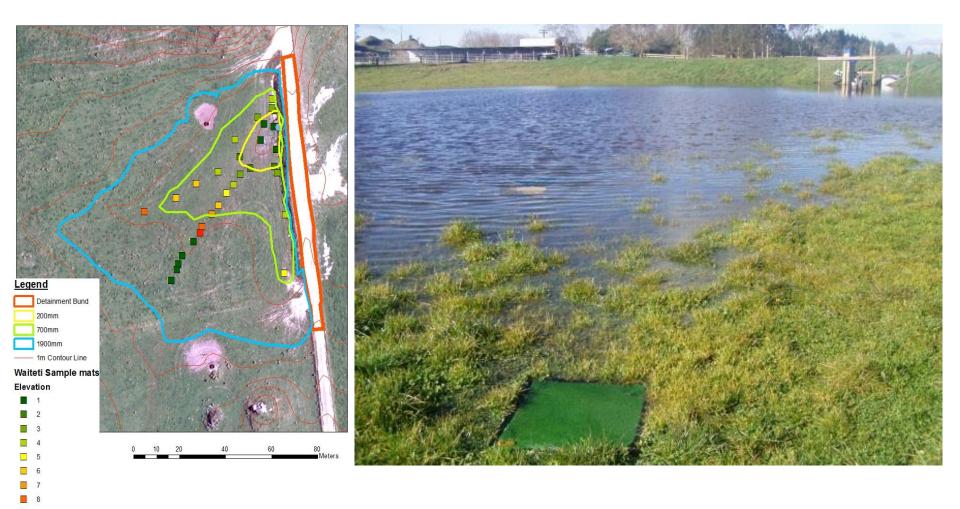
- An earth bund which ponds ephemeral stream water
- Aims to control residence time of storm water, specifically for P mitigation
- Storage capacity >120:1 (100 m³ storage per hectare of catchment)
- Permitted activity (if under < 1.5m high and 10,000 m³ storage, or under 2.5 m high and 5,000 m³ storage) Rule 46.
- Ponding time up to 3 days



Detainment Bunds are a similar design with specific focus on retaining water for P-mitigation

P-Project Trials: The Performance of DBs

^{176*4&#}x27;0'E 176*8'0'E 176*8'0'E 176*10'D'E 176*12'D'E 176*14'D'E 176*16'D'E 176*15'D'E 176*20'D'E 176*20'D'E


Methods

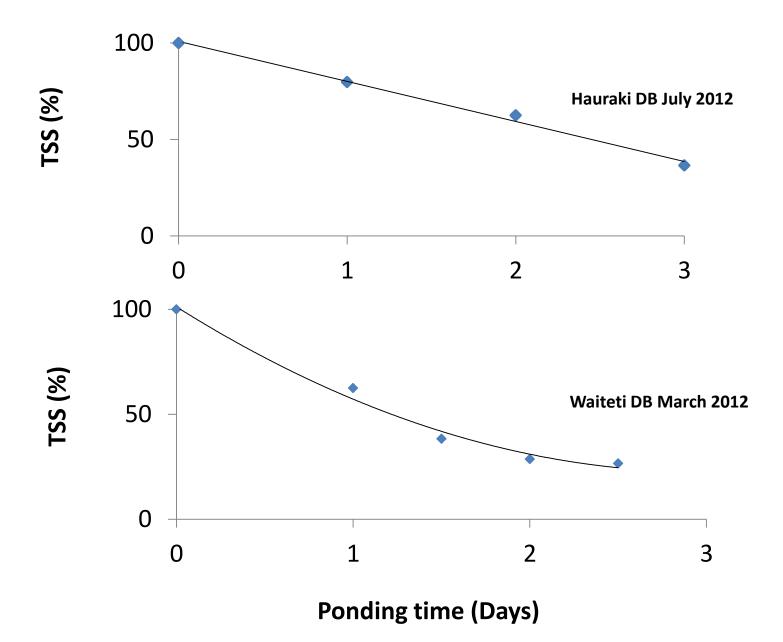
- 'Storm chasing' collection of water samples during and after storm events from inflow ephemeral streams & outflows from the DBs
- Sediment mats to catch sediment deposited in the DB ponding area
- Forensic Soil samples taken from a historic detainment dam.

Sediment sampling

Results

• What ran off depended on what was happening in the contributing catchment. Different for each event.

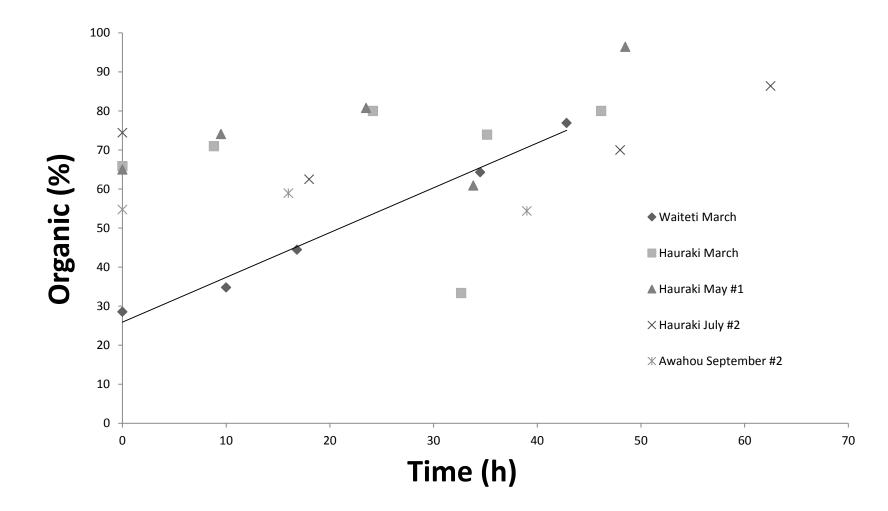
Total suspended sediment in outflow from DB


Day 1

Day 2

Day 3

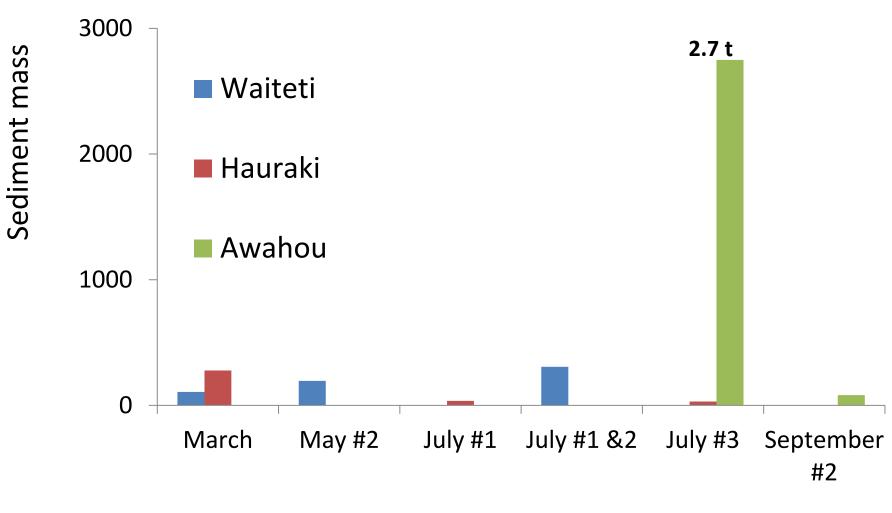
Hauraki DB, March, 2012


Total Suspended Sediment (TSS)

Particulate P (PP) in ponded water

- Variable trends in PP observed between sites/ events
 up to 36% reduction over a 20 h ponding.
- PP settlement depends on the suspended sediment characteristics (size of particles, amount of suspended sediment, organic content).
- With high levels of suspended sediment (very dirty) more dissolved P can attach onto particulates
- P can also desorb again on route downstream

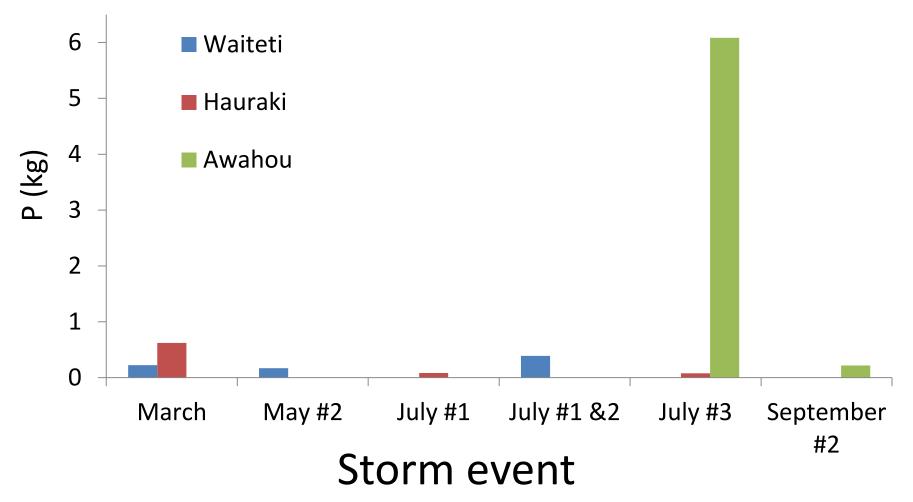
Organic material can stay suspended



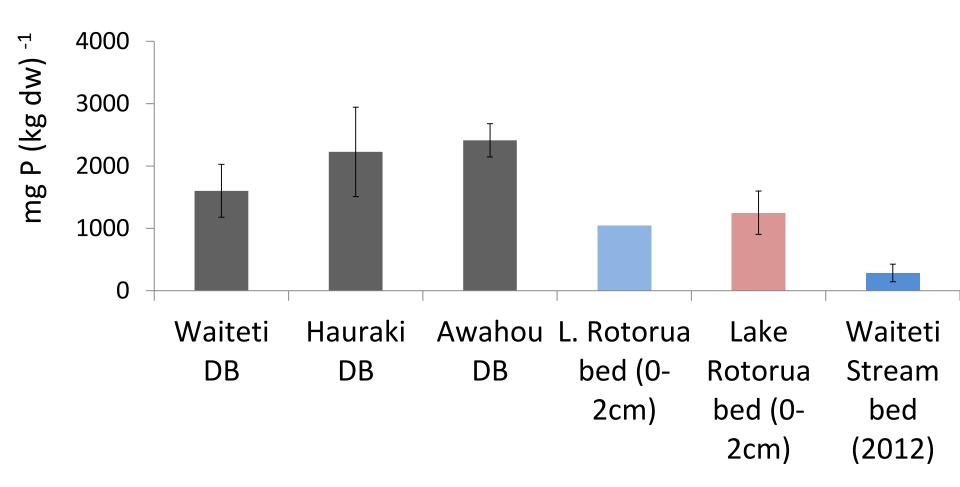
Particulate N

- In some cases, reductions in Particulate Nitrogen concentrations of outflow water were observed
- E.g. a 42% reduction in PN concentration over 20 hours
- Attributed to a recently grazed winter forage crop

Sediment deposited



Storm event


2.7 t sediment deposited extreme case

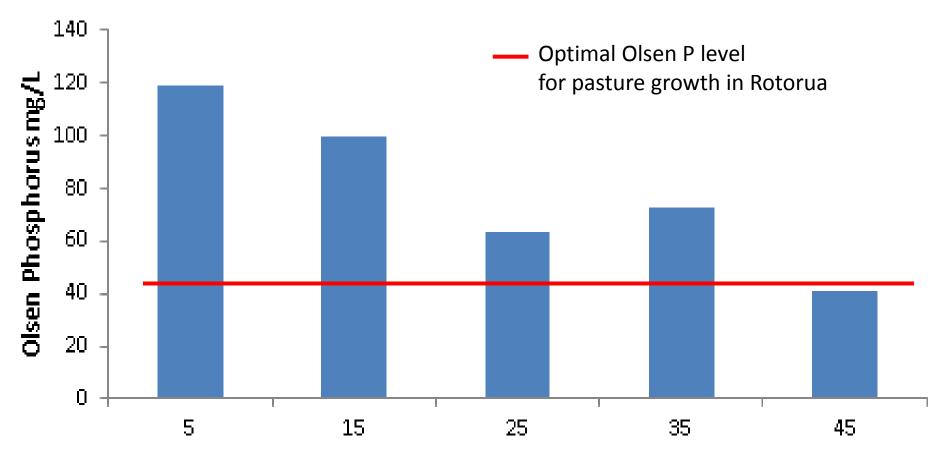
P retained

Max: 6 kg P

P concentration of Sediment

- P retained in the DBs higher than the lake bed
- Sediment captured would have desorbed P (Jamie Peryer-Fursdon)
- PP has potential to become bio-available (via desorption process)

DB Performance Data


Month	DB Site (Sub catchment)	Sediment mass (kg)	Phosphorus deposited (kg)
March	Waitetī DB	107.0	0.22
March	Hauraki DB	278.0	0.62
May #2	Waitetī DB	195.4	0.17
July #1	Hauraki DB	35.3	0.08
July 1+2	Waitetī DB	306.7	0.39
July #3	Hauraki DB	30.3	0.08
July #3	Awahou DB 🔶 🚽 🔿	2749.0	6.08
Sept. #2	Awahou DB	82.1	0.22
	Average	473.0	0.98
	Median	151.2	0.22
	Geometric Mean	160.0	0.31
		Sediment	Р
	Estimated total deposited per year per DB Based on geometric mean and 5 events per year	800.1	1.53
	Total tons sediment for 16 DBs / yr	12.8 Ton	
	Total Kg P for 16 DBs / yr		24.54

FORENSIC soil samples

In a 12 year old Detainment Dam

Olsen P concentrations across a historic ponding area

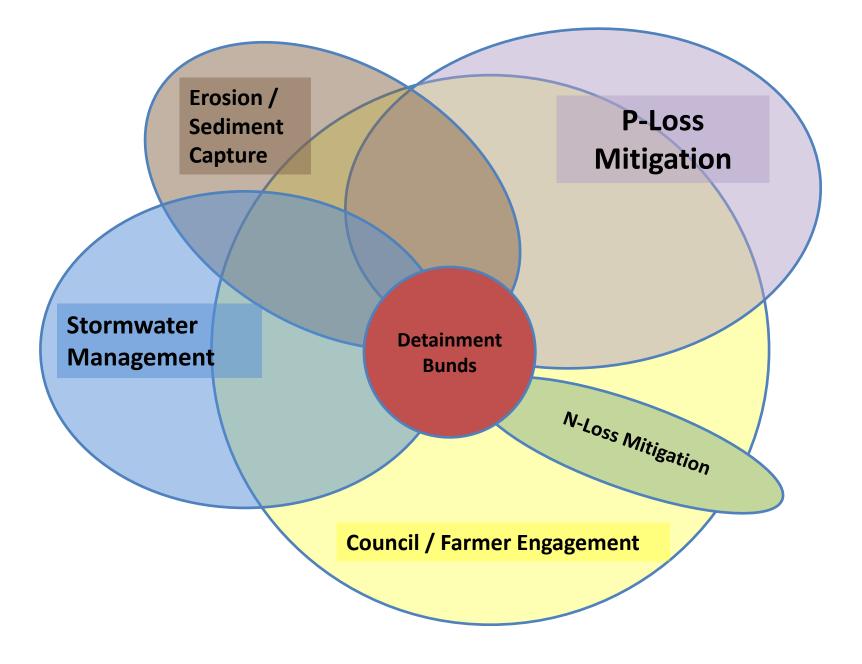
Distance from Bund (m)

Indicates that DB basins are P sinks in the long term

Storm event capability

Storm	Storm event volume (m³)			DB Exceedance Factor Volume of storm event : Capacity of DB		
	Waitetī	Hauraki	Awahou	Waitetī	Hauraki	Awahou
March	21442	16780	7178	4.7	3.1	2.2
May	27484	25833	9201	6.0	3.9	2.8
July #1	39810	31156	13328	8.7	5.7	4.0
July #2	63911	50017	21396	13.9	9.1	6.5
July #3	46302	36236	15501	10.1	6.6	4.7
Sept#1	14812	11592	4959	3.2	2.1	1.5
Sept #2	11221	47585	3757	2.4	1.6	1.1
DB Capacity (to spillway; m³)	4589.0	5469.0	3298.0	DB Capac 67 : 1	ity (m³); <mark>Catchmen</mark> 101 : 1	it area (ha) 157 :1

- Large volumes of water going through the DB's.
- Better ratio DBs hold a better proportion of water.


Integrating DBs into farm systems

We are building DBs on some of the best paddocks on the farm
Aim to maintain the productive potential of the ponding area

Optimal ponding time is a compromise between:

- maximising water treatment with long residency time
- maintaining pasture quality

The farmers are happy with up to 3 days inundation

Rotorua P-Project Summary

- DBs can be effectively used to reduce P loads to Lake Rotorua
- Numerous co-benefits
- 18 DBs Built in Rotorua Lakes catchments so far
- Whole sub-catchment treatments initiated:
 - Waimihia sub-catchment 900ha / 39 proposed DBs
 - Rerewhakaaitu sub-catchment 1600 ha GIS scoping completed
- DB user guidelines handbook drafted
- DBs are not a silver bullet just one tool in the mitigation toolbox
- More quantitative research is needed on DB performance in different situations and soil types

Thanks again to the researchers and particularly the farmers for rising to the challenge of integrating DBs into their farming systems

Funding of the Rotorua P-Project:

- Bay of Plenty Regional Council
- DairyNZ
- University of Waikato
- New Zealand Transport Agency

Profitability. Sustainability. Competitiveness.