

Allowance allocation in nutrient markets with heterogeneous farmers

The Lake Rotorua catchment

Levente Timar Motu Economic and Public Policy Research & GNS Science 13th May 2013

• Authors

Dr. Levente Timar, Simon Anastasiadis and Dr. Suzi Kerr (Motu Economic and Public Policy Research)

• Funding

Bay of Plenty Regional Council

• Contact

Email: <u>levente.timar@motu.org.nz</u> Telephone: (04) 939-4250

Objective

- Model the impact of two alternative nutrient allowance allocation approaches for the Lake Rotorua catchment using the NManager model
 - Sector-based averaging
 - Grandparenting

Draft

- Cap on agricultural nutrient losses in 20 years:
 256 tonnes N/year (current losses of 526 tN/year)
- Focus on effects of farm heterogeneity

Outline

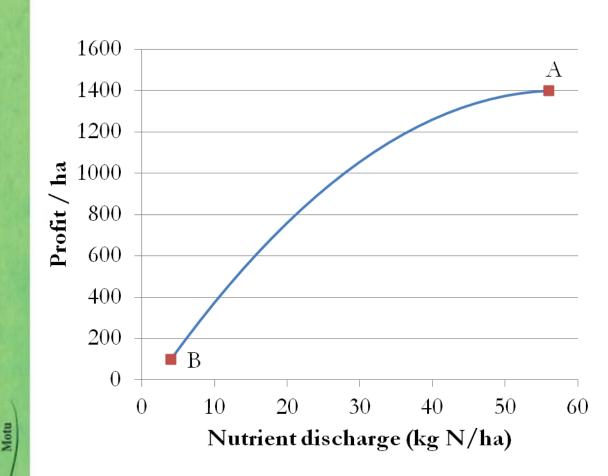
• Main points

Draft

- Background on the NManager model
- A few notes on methodology
- **Preliminary** results
 - Cross-sectoral results
 - Impacts of allocation within sectors
- Summary

Main points

- The choice of allocation approach does not matter for cost sharing across the sectors
- The choice of allocation approach matters greatly for cost sharing within each sector
- The grandparenting approach tends to ease the burden on those who mitigate more
- The source of variation in benchmarked nutient losses should be of interest to policy makers


NManager

- Simulation-based optimisation model of water quality policy (not farm management model)
- Profit functions quadratic in nutrient discharge (N)

$$Profit = a N^2 + bN + c$$

- Simplified view of farms
- Desirable properties, but not fully flexible
- NManager determines market price of allowances from demand and supply (cap)

Profit functions

Draft

- Higher intensity raises profits, but...
- at a decreasing rate
- Increasing marginal cost of mitigation
- Smoothness

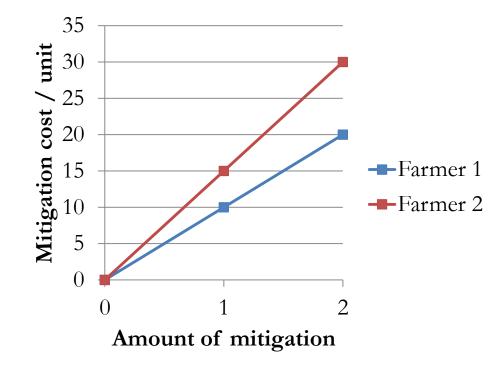
Data

- Farm-specific
 Overseer results
 from BoPRC
- Previous research

Cross-sectoral results (year 20)

Sector	Dairy		Drystock	
	total	per ha	total	per ha
Area (ha)	5,492		13,987	
Nutrient loss (kg N/year)	232,737	42.38	292,716	20.93
Mitigation (kg N)	99,583	18.13	170,321	12.18
Estimated baseline profit (\$)	5,107,532	929.94	5,789,533	413.93
Mitigation cost (\$)	791,884	144.18	1,416,901	101.30
Net allowance cost (\$)	347,834	63.33	-347,355	-24.83
Total cost (\$)	1,139,718	207.51	1,069,546	76.47

Cross-sectoral results (year 20)


Sector	Dairy		Drystock	
	total	per ha	total	per ha
Area (ha)	5,492		13,987	
Nutrient loss (kg N/year)	232,737	42.38	292,716	20.93
Mitigation (kg N)	99,583	18.13	170,321	12.18
Estimated baseline profit (\$)				
Mitigation cost (\$)		++		++
Net allowance cost (\$)		+		-
Total cost (\$)		+++		+

Cross-sectoral results (year 20)

- These outcomes are identical across the two allocation scenarios because both are based on
 - Identical nutrient caps

*aft

- Free trade in allowances
- The same allocation to each sector

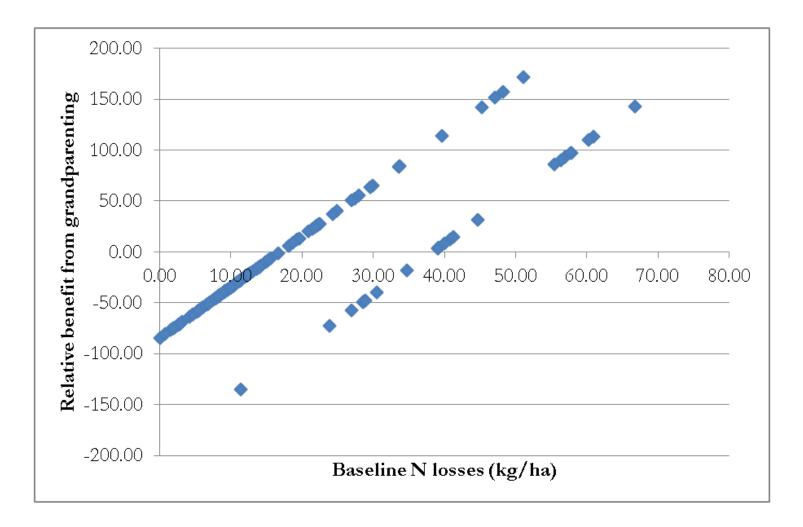
Allocation impacts

• Who is affected?

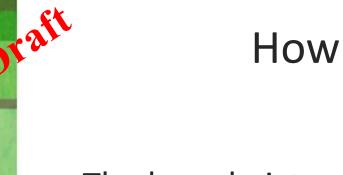
Motu

What types of farmers gain of lose from one allocation method relative to the other?

- How are they affected? How does allocation affect cost sharing within the sectors?
- Why are they affected? And what are the implications?


Who is affected?

Draft

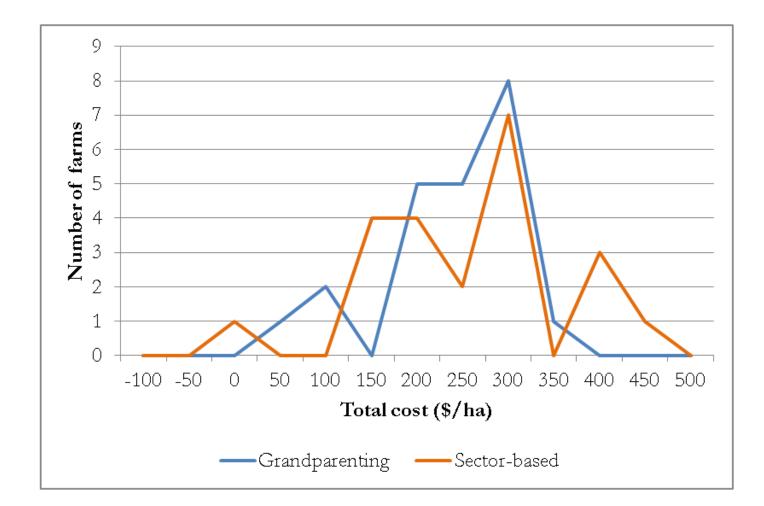

		Allowances		
Farmer	Nutrient loss	SA	GP	SA-GP
Farmer 1	10	10	5	5
Farmer 2	20	10	10	0
Farmer 3	30	10	15	-5
Total	60	30	30	0

- High baseline N: higher allocation under GP
- Low baseline N: lower allocation under GP

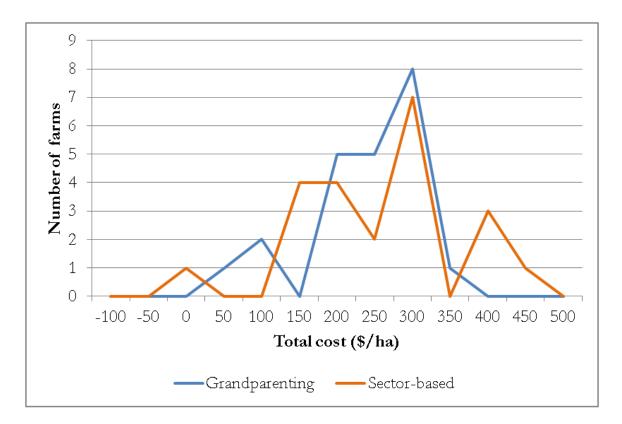
Who is affected?

Motu

Motu

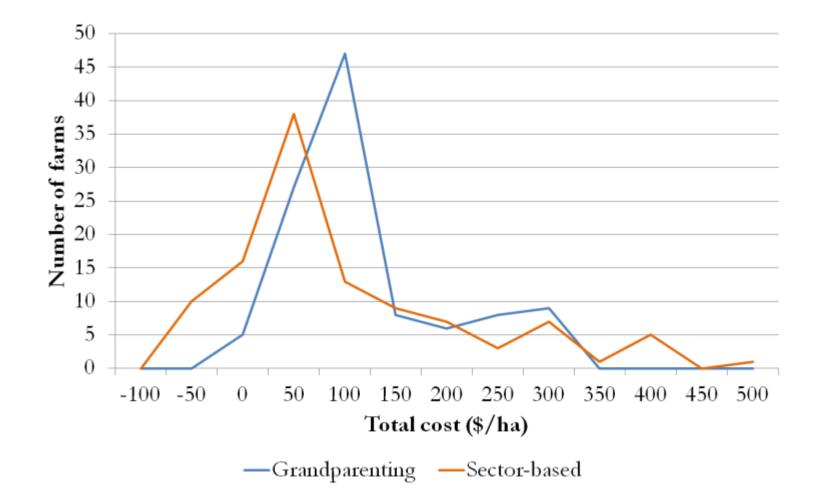

How are they affected?

• The broad picture: how does this affect cost sharing within each sector?


Total cost = mitigation cost + net cost of allowances traded – value of free allocation

How are they affected? Dairy

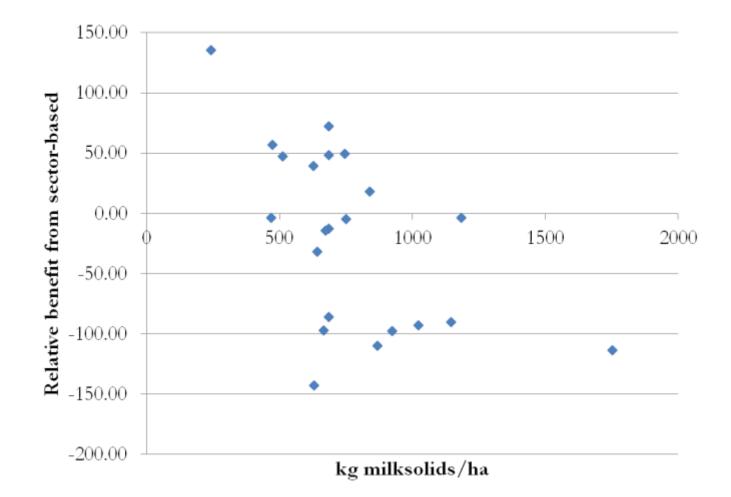
Draft


How are they affected? Dairy

 The grandparenting approach tends to ease the burden on those who mitigate more

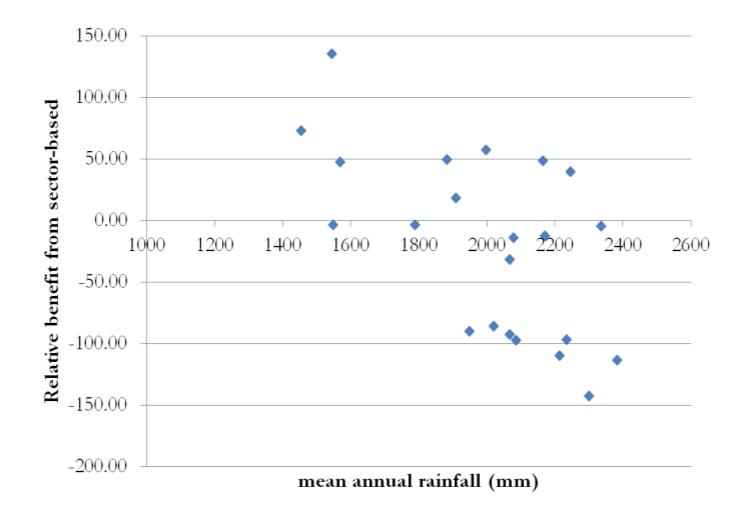
How are they affected? Drystock

Draft



Motu

Why are they affected?


- Question is akin to asking why benchmarked nutrient losses differ across farms
- What is the source of variation in benchmarked nutrient losses?
- Why does this matter?

Why are they affected?

Motu

Why are they affected?

Motu

Policy implications

- Benchmarked nutrient losses may differ due to
 - Farm management practices
 - Geophysical factors outside the farmer's control
- Argument for sector-based averaging: it rewards past mitigation and more sustainable farming practices
- Argument for grandparenting: does not disadvantage farmers who have high rates of baseline nutrient loss due to factors outside their control

Policy Implication

- Which allocation is "better"?
- Political desirability should depend on balance of factors that determine baseline nutrient losses
 - Sector-averaging: if farm management more important
 - Grandparenting: if exogeneous factors more important
- Grandparenting some portion of allowances may be justified to ease the burden on farmers who happen to own land that is more prone to high nutrient loss

Summary

- The choice of allocation approach does not matter for cost sharing across the sectors
- The choice of allocation approach matters greatly for cost sharing within each sector
- Grandparenting tends to ease the burden on those who mitigate more, but does not reward past mitigation
- The source of variation in benchmarked nutrient losses should be of interest to policy makers
- Calibrating allocation to geophysical factors could be desirable