Lake Rotorua groundwater study: results of the 2004-2005 field programme

R Reeves, P A White, S G Cameron, G Kilgour, U Morgenstern, C Daughney, W Esler and S Grant

Confidential Client Report 2005/66

> July 2005

Lake Rotorua groundwater study: results of the 2004-2005 field programme

Prepared for

ENVIRONMENT BAY OF PLENTY

R Reeves P A White S G Cameron G Kilgour U Morgenstern C Daughney W Esler S Grant Institute of Geological & Nuclear Sciences Limited

CONFIDENTIAL

Client Report 2005/66 Job Numbers 520W2054 to 520W2060 inclusive

July 2005

COMMERCIAL IN CONFIDENCE: This report has been prepared by the Institute of Geological & Nuclear Sciences Limited exclusively for and under contract to Environment Bay of Plenty. Unless otherwise agreed in writing, all liability of the Institute to any party other than Environment Bay of Plenty in respect of the report is expressly excluded.

LIST OF CONTENTS

Page

	EXECU	UTIVE SUMMARY	. vi
1.0	INTRO	DDUCTION	1
	1.1	References	3
2.0	GEOL NEW I	OGY AND PIEZOMETER CONSTRUCTION OF THE DRILL HOLES	4
	2.1 2.2 2.2.1 2.2.2 2.2.2.1 2.2.2.2 2.2.2.3 2.2.2.4 2.3 2.3.1 2.3.2 2.3.2.1 2.3.3 2.3.3.1 2.3.3 2.3.3.1 2.3.4 2.4	Introduction Dibley piezometer Drilling Geology of Dibley Bore 90-122 m aquifer 122-123 m 123-125 m 125-151.5 m Jessie Martin Memorial Park Piezometers Introduction Summary of D3 Drilling Summary of DP-2 Drilling Geology of the Jessie Martin Memorial Park bores References	4 4 9 .10 .10 .10 .11 .11 .16 .17 .17 .18 .23
3.0	PUMP	TEST RESULTS	.24
	3.1 3.1.1 3.2 3.2 3.2.1 3.2.2 3.2.3 3.2.3 3.2.4 3.2.5	Results of pump test on Dibley bore (DP-1) Introduction Pump test results Results of pump test on JMM Park bore (DP-2) Introduction Pump test results Conclusions Mamaku Township pump test References	.24 .24 .25 .31 .31 .33 .37 .37 .38
4.0	LAKE	ROTORUA CATCHMENT BORE SUMMARY	.39
	4.1 4.2 4.2.1 4.2.2 4.2.3	Introduction Methods Bore locating Measuring water levels Bore survey	.39 .39 .40 .41 .41

	4.3	Results	42
	4.4	Limitations	44
	4.5	References	
5.0	GROU	NDWATER QUALITY AND WATER DATING	45
	5.1	Introduction	45
	5.2	Methods	45
	5.2.1	Site selection	45
	5.2.2	Sampling/analyses	47
	5.2.3	Re-sampling	49
	5.3	Results	49
	5.4	References	53
6.0	GROU	NDWATER CATCHMENT	54
	6.1	Introduction	54
	6.2	Review	54
	6.3	The field programme	56
	6.3.1	Nature and location of water discharge	56
	6.3.1.1	Results	57
	6.3.2	Measurement of water discharge	57
	6.3.3	Combined list of lake-side sites	58
	6.3.4	Surface water flow rates	58
	6.3.5	Stream losses/gains to/from groundwater	62
	6.3.6	Rotorua rainfall recharge lysimeter installation	62
	6.3.6.1	Introduction	62
	6.3.6.2	Materials and methods	62
	6.4	Summary	68
	6.5	References	69

LIST OF APPENDICES

Appendix 1.1	Scope of work for the field programme (Note that the contract is not reproduced in full)70
Appendix 3.	Pump test data supplied to GNS for the Mamaku Township bores75
Appendix 4.1	New bores found and the survey results
Appendix 4.2.	Data used for the piezometric map90
Appendix 5.1	Laboratory result reports and methods

Appendix 6.1	Description of Lake Rotorua springs, seeps and wetlands identified in the lake-edge survey	124
Appendix 6.2	Flow measurements made by Environment Bay of Plenty in December 2004 and February 2005	158

LIST OF TABLES

Table 2.1	Piezometer construction summary of piezometer DP-1	.7
Table 2.2	Piezometer construction summary of piezometer D3	.17
Table 2.3	Piezometer construction summary of piezometer DP-2	.18
Table 3.1	Summary of pumping and observation bore details	.25
Table 3.2	Bore location	.25
Table 3.3	Summary of aquifer transmissivity and storativity	.26
Table 3.4	Summary of pumping and observation bore details	.32
Table 3.5	Bore location	.33
Table 3.6	Summary of aquifer transmissivity and storativity	.33
Table 5.1	Bottles collected for each analyses	.47
Table 5.2	Summary of chemistry results sampled in the EBOP Lake Rotorua Groundwater study – field programme	.51

LIST OF FIGURES

Figure 2.1	Piezometer DP1	6
Figure 2.2	Geological summary of DP-1	12
Figure 2.3	Microprobe plots of samples from the DP-1 cuttings. A) $SiO_2 vs$ CaO and B) $SiO_2 vs K_2O$. 101 – cuttings from 101 m; 150 – cuttings from 150 m; Distal – a sample of distal Mamaku Ignimbrite from coastal Bay of Plenty	13

Figure 2.4	Piezometer DP-215
Figure 2.5	Piezometers DP-2 and D315
Figure 2.6	Piezometer D316
Figure 2.7	Geological summary of piezometer D321
Figure 2.8	Geological summary of piezometers DP-222
Figure 3.1	Location map of DP-1 pump test bores27
Figure 3.2	Pumping bore drawdown and recovery
Figure 3.3	Pumping bore Theis recovery analyses
Figure 3.4	Obs 1 bore drawdown and recovery
Figure 3.5	Obs Hantush and Jacob (1955) leaky aquifer analysis29
Figure 3.6	Obs 1 Theis recovery analysis
Figure 3.7	Groundwater level at observation bores 2 and 3
Figure 3.8	Daily rainfall at Kaharoa during December 2004
Figure 3.9	Location map of the DP-2 pump test bores
Figure 3.10	Pumping bore drawdown and recovery
Figure 3.11	Pumping bore Theis recovery analyses
Figure 3.12	Obs 1 bore drawdown and recovery
Figure 3.13	Obs 1 Hantush and Jacob (1955) leaky aquifer analysis
Figure 3.14	Obs 1 Theis recovery analysis
Figure 4.1	Potentiometric surface map of the Lake Rotorua region43
Figure 5.1	Location of sites sampled in the EBOP Lake Rotorua Groundwater study – field programme
Figure 6.1	Location of near-shore and lake-shore features, Lake Rotorua
Figure 6.2	Sites at which flows were measured (December 2004 and February 2005)

Figure 6.3	Measured flow December 2004 and February 200561
Figure 6.4	Kaharoa rainfall recharge site64
Figure 6.5	Recharge site prior to driving casings
Figure 6.6	Initial placing of casing64
Figure 6.7	Casing excavation
Figure 6.8	Cutting plate65
Figure 6.9	Lifting the soil column65
Figure 6.10	Cutting plate removed
Figure 6.11	Base preparation of the soil column
Figure 6.12	Digging the box section
Figure 6.13	Lysimeter installation67
Figure 6.14	Lysimeter outlet67
Figure 6.15	Backfilling the pit67
Figure 6.16	Completed lysimeter installation

v

EXECUTIVE SUMMARY

The groundwater system of the Lake Rotorua catchment plays a crucial role in nutrient transport to Lake Rotorua. Nutrients associated with land use enter the groundwater systems through soil drainage and rainfall recharge. The nutrients reside in the groundwater system, probably for decades, but return to the surface through spring flows and direct recharge to the lake. An understanding of both the groundwater and surface water systems is required to plan remedial work to maintain and improve the lake's water quality.

The Institute of Geological and Nuclear Sciences (GNS) was commissioned by Environment Bay of Plenty (EBOP) to collect new geological, hydrological, water quality and water dating data to enable GNS to develop groundwater models of the Lake Rotorua catchment. This report only deals with new data collected as part of the field programme. The report only reports the new data, and does not attempt to interpret or analyse the data. Interpretation of new data will be done in a later report.

EBOP indicated that the priority area for fieldwork was an arc from approximately Mt Ngongotaha to the west of Lake Rotorua, around to Hamurana to the north of Lake Rotorua, and then to approximately Lynmore to the south west of Lake Rotorua. This has been the focus for new work.

Work completed as part of the field programme includes:

- Drilling and construction of a 150 m deep piezometer drilled into the Mamaku Ignimbrite formation on the western side of Lake Rotorua.
- Drilling and piezometer construction of two other piezometers drilled into the Huka sediment formation near Ngongotaha (20 m deep and 80.5 m deep).
- Two constant rate pump tests to determine groundwater aquifer transmissivity and storativity in the:
 - Mamaku formation performed on the above bore at 113.2 m
 - Huka sediment formation performed on the deep bore above at 36 m
- Collection and analyses of 41 water samples for either nutrients, major cations/anions and or water dating (tritium only, or, tritium, CFC's and SF₆).

- Locating 104 existing bores/springs not on the EBOP database.
- 43 bores/springs were surveyed using a high resolution global positioning system (GPS).
- Install a rainfall recharge site at Kaharoa to measure the amount of water infiltrating through the soil profile.
- Perform a lake edge survey identifying actual and potential water flows into Lake Rotorua.

Potential areas of groundwater/stream interaction in the Lake Rotorua catchment was done by EBOP staff, but not reported in this report.

1.0 INTRODUCTION

The groundwater system of the Lake Rotorua catchment plays a crucial role in nutrient transport inflows to Lake Rotorua. Nutrients associated with land use enter the groundwater systems through soil drainage and rainfall recharge. The nutrients reside in the groundwater system, probably for decades, but return to the surface through spring flows and direct recharge to the lake. Because of a lack of available information for the groundwater systems of the Lake Rotorua catchment, further hydrological data is needed to enable the effects of nutrients in groundwater systems to be characterised and to predict the effects on water quality of Lake Rotorua.

Environment Bay of Plenty (EBOP) has commissioned the Institute of Geological and Nuclear Sciences (GNS) and the National Institute of Water and Atmospheric Research (NIWA) to ultimately develop a series of models simulating nutrient transport through the groundwater and surface water systems in the Lake Rotorua catchment. GNS is expected to provide NIWA with a groundwater model of the catchment to feed into a model that will encompass both groundwater and surface water.

GNS is developing the groundwater model of the Rotorua catchment in several phases.

- 1. White, et al. (2004a) reviewed available data relevant to developing a groundwater model for the Lake Rotorua catchment. Gaps in hydrological data were identified. This is referred to as the phase 1 work.
- 2. White, et al. (2004b) recommended a programme of new data that needed to be collected to fill data gaps as identified in White, et al. (2004a).
- 3. Collection of new field data. This is referred to as the Field programme.
- Develop initial groundwater models using the available data. This is known as the phase 2 work.
- Link the groundwater models with the NIWA model and make adjustments as required. This is the phase 3 work.

This report is step 3 (above) – reporting the results of new data collected.

1

White, et al. (2004b) recommended a detailed list of work required to develop groundwater models of the Lake Rotorua catchment. This included drilling new bores, pump tests, water quality measurements, water dating measurements, geophysics, geothermal fluxes, water levels and physical hydrological measurements.

GNS was commissioned by EBOP to collect a subset of the data (Appendix 1.1) as suggested by White, et al. (2004b) in order to conform to budgetary and time constraints. EBOP indicated that the priority area for work was an arc from approximately Mt Ngongotaha to the west of Lake Rotorua, around to Hamurana to the north of Lake Rotorua, and then to approximately Lynmore to the south west of Lake Rotorua.

Work was prioritised based on EBOP's priority area.

This report presents the data collected as part of the field programme. The data reported reflects a combination of both the GNS and EBOP contributions (Appendix 1.1). No attempt is made to analyse or interpret the data, as this will occur in the next phase of the project. The report is split into five sections.

- New boreholes detailing the geology, hydrological conditions and piezometer constructions of the new groundwater exploratory boreholes drilled as part of the programme.
- **Pump tests** detailing methods and results of pump tests performed as part of the programme.
- Water levels detailing bores located, water levels and survey results for bores.
- **Groundwater quality/water dating** detailing water quality and water dating results for water samples collected as part of the field programme.
- **Groundwater catchment** detailing installation of the rainfall recharge site, areas of stream/ groundwater interaction and a seep/spring survey.

Each section has been written as a 'stand alone' section.

2

1.1 References

- White, P.A., Cameron, S.G., Kilgour, G., Mroczek, E., Bignall, G., Daughney, C. and Reeves, R.R., 2004(a). Review of groundwater in the Lake Rotorua catchment. GNS Client Report 2004/130.
- White, P.A., Reeves, R.R., Cameron, S.G. and Daughney, C., 2004(b). Proposed field programme to define groundwater and nutrient flow into Lake Rotorua. Geological and Nuclear Sciences client report 2004/130a.

2.0 GEOLOGY AND PIEZOMETER CONSTRUCTION OF THE NEW DRILL HOLES

2.1 Introduction

Environment Bay of Plenty (EBOP) wants to collect more hydrological data on the groundwater systems in the Lake Rotorua catchment as part of a project identifying, characterising and predicting the effects of nutrients in groundwater on Lake Rotorua.

White et. al. (2004a) made recommendations for further work investigating the groundwater resources of the Lake Rotorua catchment based on a review of existing groundwater data relevant to the nutrient study (White et. al., 2004b). Thirty-two new boreholes were proposed to address a range of data gaps identified in these reports. Time and cost constraints meant 32 new boreholes could not be drilled as part of this field programme. Instead, boreholes were prioritised and constrained to five new groundwater investigation holes.

The Institute of Geological and Nuclear Sciences (GNS) was contracted by EBOP to provide geological and piezometer construction advice for up to five new groundwater exploratory holes in the Lake Rotorua catchment. Subsequently only three of these holes were drilled due to unexpected geologies and difficult drilling conditions. This chapter reports the results of the geological logging, piezometer constructions and issues surrounding each new groundwater investigation bore.

2.2 Dibley piezometer

2.2.1 Drilling

On 29 November, 2004 Bayliss Brothers Drilling started drilling a 150 mm groundwater monitoring piezometer (DP-1, EBOP bore number 10965) using the air rotary drilling technique. Air rotary drilling was considered to be the preferred technique because the method minimises additives which other drilling methods employ. Additives were not desired because they have the potential to chemically contaminate the groundwater and/or may affect aquifer permeability. This is an important issue because key groundwater quality and aquifer property information will be assessed from these boreholes for the project.

Caution should be used when interpreting cuttings using air-rotary drilling technique. This is because:

- Large grain sediments are reduced to sand small gravel size sediments to enable the sediments to be blown up the casing. This can make identification of larger grained sediments difficult.
- High pressure air used to blow cuttings up the hole can cause;
 - Sediments to be blown into the formation instead, thus not coming up the hole for examination.
 - Sediments to stick to the casing walls, thus either delaying the 'depth' at which the sediments are seen, and, causing the potential to mix with other sediments at a deeper depth.

The purpose for drilling this hole was to:

- 1. Obtain an accurate geological log.
- 2. Obtain groundwater quality samples.
- 3. Perform a pump test to ascertain aquifer transmissivity and aquifer storativity.
- 4. Obtain the thickness of the Mamaku Ignimbrite.

Results of the pump test are discussed in Chapter 3.0 (pump test results).

The location of the piezometer is in a farm paddock on the Dibley property at NZMG grid coordinates 2788703.8, 6346607.6 (Figure 2.1).

Figure 2.1 Piezometer DP1. Piezometer under GPS tripod.

The location for drilling was dictated by the following factors:

- Exploration of a high priority area of interest to EBOP.
- Penetrate the Mamaku Ignimbrite.
- Proximity to an existing bore suitable for monitoring groundwater levels during the pump test.
- Be in an area where little was known about the geology.
- Being about mid way up the Mamaku Plateau.
- An area where access was available and permission to drill could be obtained.
- An area where future access to the bore by EBOP was possible.

The final piezometer construction is summarized in Table 2.1.

Item	Distance from ground level (m)	Diameter (mm)
Piezometer		
Casing (Steel)	-0.83 - 50.7	150
Casing (PVC)	-0.39 - 127	80
Casing (PVC)	127 - 138	50
Screened interval (PVC)	138 - 150	50
Total drilled depth	150	150/100
Casing – annulus backfill		
Concrete pad	0 - 0.2	
Bentonite	0.2 - 5	
Landscaping sand	5 - 30	
Bentonite	30 - 55.4	
Walton Park pea gravel backfill	55.4 - 150	

Table 2.1Piezometer construction summary of piezometer DP1.

PVC casing was joined using 316 stainless steel sleeves riveted to the casing

Key issues which affected the piezometer construction included:

- The 150 mm steel casing used to 'drive' the hole got stuck at 50.7 m. This meant that 'open hole' drilling was used from 50.7 m 119.2 m and the steel casing remained in the hole forming part of the piezometer construction.
- Drill cuttings were discontinuous between approximately 90 m to 119.2 m. This is probably due to cuttings having been 'blown' into the formations using the methods employed. A small amount of drilling foam was added to the hole at about 119 m in an attempt to retrieve cuttings. Because this did not work, drilling was suspended.
- Drilling was then re-started on 25 January, 2005 using a different drill rig. The drill rig continued drilling a cased (steel), 100 mm hole from 119.2 to 150 m using the air rotary technique. The 100 mm steel casing was removed.
- Smaller diameter (50 mm) PVC casing was used from 127 m to 150 m which fitted down the 100 mm hole. A 316 stainless steel reducer was constructed to join the 50 mm diameter PVC to the 100 mm diameter PVC. Larger diameter PVC casing from 127 m to the surface was used to allow EBOP greater options when selecting a pump to sample the bore and to give the piezometer more strength down to 127 m.

7

- Water was encountered at 67.7 m and the water level rose to 59.2 m below ground level. Drilling continued to approximately 113.2 m depth before doing a 24 hr pump test (results of this are reported in the pump test section). Little return of cuttings was observed between 71 and 79 m suggesting that drilling encountered a series of cooling joints within the partially welded ignimbrite. These joints provide pathways for waterflow. From 90 m to 122 m, drilling encountered an unwelded unit of the Mamaku Ignimbrite that is waterbearing and permeable. A small (approx 0.8 m) water level difference compared to the initial water level at 67.7 m is observed from 90 m until the end of the hole.
- The piezometer was developed by pumping the bore for approximately five hours at approximately 24 l/minute once the piezometer had been constructed.
- The piezometer is finished with a concrete pad, lockable above-ground steel casing, and, a wooden fence.
- A large amount of Walton Park pea gravel was required to backfill between the PVC casing and the hole between 119 and 70 m. This suggests a large cavity formed somewhere in this area. This is consistent with the loss of cuttings from this depth range.
- Budgetary constraints prevented this hole from been drilled any further than 150 m.

2.2.2 Geology of Dibley Bore

One of the reasons for drilling this bore was to determine the thickness of the primary hydrolgeological unit in the Rotorua Catchment – Mamaku Ignimbrite. Mamaku Ignimbrite has been studied in detail by Milner et al. (2003) who used available exposures to subdivide the ignimbrite into three units; the lower (l), middle (m) and upper (u) Mamaku Ignimbrite. The middle (m) and upper (u) ignimbrite units in the cuttings analysed from this bore (Figure 2.2) are not clearly delineated and for the purposes of this report are considered a single, gradational entity. The m/u Mamaku is widely exposed in and around the Rotorua basin. The uppermost soft vapour-phase altered, grey-pink-purple ignimbrite becomes greyer, harder and less vapour-phase altered with depth. The progressive weak to moderate welding encountered from about 35 m to nearly 90 m is typical of the middle and lower part of the m/u Mamaku, although few deep exposures are known close to the caldera, as well as very few detailed borelogs.

Cuttings of the m/u Mamaku Ignimbrite contain abundant rock fragments mainly of rhyolite lava, but also of minor andesite lava, and in the uppermost level, fragments of recycled m

8

Mamaku Ignimbrite. These lithics are mostly mid grey, but many in the lower part of this unit are stained black by haematite that was most likely deposited by later cold groundwater inflows.

Welded ignimbrites routinely contain variably spaced cooling cracks that enable groundwater penetration. Groundwater was first encountered in this borehole at 67.7 m, rising on standing to 59.2 m (probably due to a series of thin cooling cracks). This moderate rise in water level, along with subsequent dry cuttings obtained suggested only slight permeability and the presence of a very minor aquifer. Injected air and most cuttings were lost into voids in the formation between 71 and 79 m (below casing). M/u Mamaku ignimbrite cuttings of increasing freshness and hardness were obtained from depths of 79 m to 89.2 m. The deepest cuttings of this unit are only moderately welded. The lower base unit of the ignimbrite was not encountered during drilling of this borehole.

The geological log of Dibley bore indicates the Mamaku Ignimbrite aquifer has variation in permeability over the thickness of penetrated aquifer. A water bearing fracture occurs between 67.7 m to 68 m depth. The ignimbrite was non-water bearing from 68 m to 73.5 m depth. Water bearing fractures occurred from 73.5 to 90 m depth and water bearing non-welded ignimbrite sediment from 90 m to 122 m depth. A change in permeability is indicated at 122 m to 123 m due to a fine sand and silt layer and again from 125 to 151 m due to a fine to medium sand layer. The lateral continuation of layers with different permeability away from the Dibley bore are unknown.

2.2.2.1 90-122 m Aquifer

Discontinuous cuttings from 90 to 122 m are pumiceous pebbly coarse sands. The pumice is up to 30 mm and is rounded, white to pale grey, mostly fresh (unaltered), and devoid of any signs of welding. Rounding may have occurred during the drilling process, but probably not to the same degree as seen in the cuttings. The pebbles are predominantly subangular rhyolite lava and rounded ignimbrite clasts. Sands are quartz-rich with hypersthene minerals dominant over hornblende.

No cuttings and minimal air return were obtained from 104.2 to 119.2 m coinciding with a minor hole collapse to 117 m. Cuttings bailed from this 117 m collapse are of similar lithology to those obtained from 104 m.

The fabric and origin of the 90-122 m unit is difficult to determine, however cuttings are consistent with the sandy unwelded "*l* Mamaku Ignimbrite" described by Milner et al. (2003). Horizontal permeability is much higher than the overlying ignimbrite, but this unit must be compacted, given the stability of the hole while significant compressed air was injected during drilling and later pumping. A substantial section of overgauged hole (larger diameter of hole than the size of the drill bit) developed somewhere below 90 m, as became apparent during backfilling around the piezometer (2120 kg of 2 mm Walton Park pea gravel was required to backfill to 70 m). It is assumed that this cavity coincided with the major non-return zone from 104-119 m, but due to the slow settling rate of the backfill this remains uncertain.

2.2.2.2 122-123 m

At 122 m a yellow/brown mud was returned. This possibly represents a buried soil, and therefore a significant time interval, or a thin sedimentary infill.

2.2.2.3 123-125 m

Alternating soft and very hard layers were reported by the driller; possibly lava boulders. Cuttings of red/brown rhyolite were returned. This could represent the apron of a nearby rhyolite lava dome or the basal, lag breccia of the main ignimbrite sequence. Further chemical analysis would help this interpretation.

2.2.2.4 125-151.5 m

Dark grey, very glassy, clean medium-coarse sand. The sand is composed almost entirely of clear-colourless to near-black volcanic glass with very minor feldspar and quartz crystals. Ferromagnesian content of this unit is very low, and appears to consist of hypersthene only. This unit appears to be massive and is interpreted as a compacted but unwelded pyroclastic fall deposit. The unit is unknown and is not described in published reports of the Mamaku Ignimbrite by Milner et al. (2003). There is a possibility that this deposit is another phase of the *l* Mamaku Ignimbrite, based on a section described by Fransen (1982). The major element chemistry (Figure 2.3) obtained through microprobe analysis, shows that the cuttings returned from 101-150 m are chemically indistinguishable from 'typical' Mamaku Ignimbrite. Therefore, if the fine unit between 122-123 m is not a paleosol (XRD results are ambiguous), then this glassy unit (from 125-151.5 m) is probably a chemically similar, but unassociated

ash deposit sourced from near Rotorua and possibly Rotorua Caldera. Further trace element chemistry will help determine the source of this ash deposit. Abundant clean water was obtained from this unit during drilling and hydrological continuity between the sub-90 m units is possible. Therefore the Dibley bore did not drill through the bottom of the Mamaku Ignimbrite.

Summary of the geology:

0-5 m	unconsolidated Rotorua Subgroup tephras	
5-90 m	u/m Mamaku Ignimbrite. Compaction and degree of welding increase with	
	depth. Joints or voids from 71 to ~79 m with no return of cuttings.	
90-122 m	mid grey fresh compacted pumiceous pebbly coarse sands. Probably unwelded	
	<i>l</i> Mamaku	
122-123 m	yellow-brown fine-grained clay-rich deposit – possibly paleosol	
123-125 m	thin hard bands of rhyolite boulders	
125-151.5 m	dark grey and glassy, unidentified pyroclastic fall deposit with similar major	
	element chemistry to the Mamaku Ignimbrite.	

2.3 Jessie Martin Memorial Park Piezometers

2.3.1 Introduction

Two holes were drilled and piezometers constructed by Bayliss Brothers Drilling between 12 January 2005 and 8 February, 2005. The purpose of these holes was to:

- 1. Obtain an accurate geological log for the area.
- 2. Obtain groundwater quality samples.
- 3. Perform a pump test to ascertain aquifer transmissivity and aquifer storativity of the first sediment aquifer.
- 4. Obtain the thickness of the sediments overlying the Mamaku Ignimbrite.

Figure 2.2 Geological summary of DP-1.

(B)

Figure 2.3 Microprobe plots of samples from the DP-1 cuttings. A) SiO₂ vs CaO and B) SiO₂ vs K₂O. 101 – cuttings from 101 m; 150 – cuttings from 150 m; Distal – a sample of distal Mamaku Ignimbrite from coastal Bay of Plenty (Will Esler, pers. comm., 2005); Black – an average (from 12 samples) chemical composition of Mamaku Ignimbrite published in Black *et al.* (1996). Major elements are expressed as wt %.

The location of the piezometers is at the northern end of Jessie Martin Memorial Park (JMM Park), owned by Rotorua District Council. The deep piezometer (DP-2, EBOP bore number 10967) is at NGMG grid co-ordinates 2791569.6, 6342323.5 (Figures 2.4 and 2.5) and the shallow piezometer (D3, EBOP bore number 10966) is at NGMG grid co-ordinates 2791541.2, 6342329.3 (Figures 2.5 and 2.6).

The location for drilling was dictated by several factors:

- The location needs to be in a high priority area of interest to EBOP.
- The piezometer needed to tap the sediments above the Mamaku Ignimbrite.
- A bore suitable for monitoring groundwater levels was required nearby to pump test the aquifer.
- Close to Lake Rotorua.
- Drilling access and landowner permission were needed.
- Future access to the bores by EBOP was required.

Two bores were required to be drilled at the JMM park site as GNS could not locate a suitable observation or pumping bore that had enough information about the bore (e.g. bore depth, geology, screened interval) and that complied with the factors above. Two bores are required for pump testing a groundwater aquifer. One bore acts as a pumping bore, and the other acts as a monitor bore.

Permission was obtained for drilling the 2 bores at JMM Park from Rotorua District Council (RDC) prior to drilling (Street opening permit 10883). The permit states that holes should be "… finished flush with the ground so a mower can run over it". Permission was obtained from RDC (Bob Brake, e-mail 15/12/2004) to finish piezometer DP-2 with an above ground finish. This was recommended to preserve the piezometer given:

- The piezometer is currently located in a grazing area and maybe subject to animal interference, and,
- RDC had suggested earthworks around the site may occur in the future. The possibility of the piezometer been buried is minimised with an 'above ground' finish.

Figure 2.5 Piezometers DP-2 and D3.

Figure 2.6 Piezometer D3.

2.3.2 Summary of D3

2.3.2.1 Drilling

The Jessie Martin Memorial Park shallow piezometer was drilled and constructed first. This was done first to establish the location of the first groundwater aquifer and obtain an accurate static water level prior to the pump test. Bayliss Brothers Drilling commenced drilling a 150 mm hole on 12/01/2005 using the air – rotary and bailing drilling techniques. Bailing needed to be used as the sediments would 'rush' back into the drill casing each time the air was turned off to weld more casing on.

The final piezometer construction is summarized in Table 2.2. The bore construction was completed before drilling DP2.

Item	Distance from ground level (m)	Diameter (mm)
Piezometer		
Casing (PVC)	0.12 - 20	50
Screened interval (PVC)	20 - 26	50
Total drilled depth	28	150
Casing – annulus backfill		
Concrete pad	0 - 0.2	
Bentonite	0.2 - 17.2	
Sand	17.2 - 17.8	
Walton Park pea gravel backfill	17.8 - 28.0	

Table 2.2Piezometer construction summary of piezometer D3.

Threaded PVC casing was used.

Key issues which effected the piezometer construction included:

- Sediment flowed back into the casing each time the compressed air was turned off. This then required bailing the bore to remove sediment after the usual drilling stoppages to add drilling rods and to ensure that cuttings were retrieved from the hole. Bailing bores is a slow process which meant the piezometer took longer to drill than anticipated.
- Water was encountered at 24 m below ground. The static water level quickly came up to 14.05 m, suggesting the aquifer is confined. Static water level measured 23/2/05 was 10.09 m to top of PVC casing.

2.3.3 Summary of DP-2

2.3.3.1 Drilling

Bayliss Brothers Drilling commenced drilling a 150 mm hole on 18/01/2005 using the air – rotary and bailing drilling techniques.

The final piezometer construction is summarized in Table 2.3.

17

Item	Distance from ground level (m)	Diameter (mm)
Piezometer		
Casing (PVC)	-0.513 - 62.5	50
Screened interval (PVC)	62.5 - 68.5	50
Total drilled depth	80.5	150
Casing – annulus backfill		
Concrete pad	0 - 0.2	
Backfill	0.2 - 5.5	
Bentonite	5.5 - 9.5	
Sand	9.5 - 54.5	
Walton Park pea gravel backfill	54.5 - 80.5	

Table 2.3 Piezometer construction summary of piezometer DP-2

Threaded PVC casing was used.

Key issues which effected the piezometer construction included:

- Sediment was coming back into the casing each time the compressed air was turned off. This meant bailing the bore was required to remove the sediment after any stoppages. This was particularly bad from about 30 m. Bailing bores is a slow process which meant the piezometer took much longer to drill than anticipated.
- A 12 hr pump test was conducted when the bore was at 36 m depth.
- As for D3, water was not encountered until 25 m. The water level rapidly rose to 9.1 m once the aquifer had been penetrated. The static water level on 23/2/05 was 9.77 m to top of the PVC casing.
- Due to budgetary constraints, the drilling was terminated when the hole was at 80.5 m without reaching the Mamaku Ignimbrite target.

2.3.4 Geology of the Jessie Martin Memorial Park bores

The main objective of drilling at this location was to determine the thickness of alluvium and lake sediments overlying the Mamaku Ignimbrite. The thickness of alluvium and fine-grained lake sediment within the Rotorua Caldera has been difficult to determine from outcrops. Therefore drilling in this area was aimed at quantifying the sediment thickness. These fine-grained lake sediments are probably acting as a significant aquitard to groundwater flow.

Both bores drilled in this area encountered similar geology and have been combined in the following descriptions (Figures 2.7, 2.8).

Primary and reworked pumiceous volcanic material erupted from the nearby and active Okataina Volcanic Centre (from the last 18 ka of eruptions) was drilled in the first 11 m of this bore. Below this, a 5 m thick, fine sand/silt diatomite deposit was encountered, indicating a calm and relatively sediment free depositional environment immediately after the Rotoiti Eruption. The early phase of the Rotoiti eruption was drilled between 16 and 25 m. These pyroclastic deposits consist of a sandy, unwelded ignimbrite overlying an impervious, fine ash, fall deposit. This package of sediment and primary pyroclastic material above 25 m is dry and is generally acting as a confining layer to groundwater flow.

From 25 to 69 m, the lithology is that of a silty, medium sand. This correlates to "Huka 2" alluvium and is water-bearing. It is the primary aquifer in this borehole and is described in detail below:

The aquifer is dominated by oxidised compositionally very mature sands, which are mostly >90% quartz, with minor feldspar, glass, and ironsand. Most ferromagnesian minerals have been dissolved and re-precipitated as rusty coatings on other grains. The sands were derived in late "Huka 2" time (~80-55 kyr) almost entirely from the erosion of weakly to moderately welded Mamaku Ignimbrite which makes up much of the catchment. The contribution of Ngongotaha rhyolites and associated Barugh Pyroclastics to these sediments is negligible at the bore site. The sands are a moderate-energy alluvial sequence and were graded to a former lake level at about 50 metres below the present. This lake would initially have been about the present size, but was progressively infilled. Contemporary peats are recorded at this depth in many Rotorua City boreholes. The previously much higher lake level had fallen due to the formation of the Tikitere Graben outfall. Few sediments of this age are exposed in the Rotorua Basin although older analogues outcrop in Paradise Valley.

The base of the aquifer is confined by impervious blue/grey, Huka 2 lake sediments. Likely correlatives outcrop in the mid/upper Paradise Valley. The thickness and attitude of these sediments is not known. The down-gradient extension of the aquifer is not well understood, but the numerous shallow circular depressions a few metres in diameter on the western bed of

the lake are very likely to mark spring discharges from this unit. The aquifer probably extends semi-continuously below ca. 320 masl around much of the lake although its character will vary according to the pre-Rotoehu Ash paleogeography at each locality. The directly correlated Gee Rd bore aquifer (GNS Gee Road Letter Report prepared for EBOP, 31 March 2005) is of about the same age, but of an entirely different composition from the Jessie Martin Memorial Park site. Huka 3 diatomite is possibly absent from much of the eastern side of the basin, especially above about 310 m. The extension of the aquifer towards Hamurana was defined by the numerous Huka 3 diatomite prospecting bores drilled in the 1970s.

Recharge is presumably mainly from the Ngongotaha stream from about the Trout Hatchery upward. Porous Barugh Pyroclastics probably communicate with the streambed for about 1 km above the Hatchery.

Summary of Geology:

- 0-10 m fill; Rotorua Subgroup Tephras/tephric loess.
- 10-11 m Hinuera Formation sandy gravels.
- 11-16 m "Huka 3" diatomite.
- 16-26 m pumiceous sandy Rotoiti Ignimbrite (early phase only) over silty Rotoehu Ash.
- 26-69 m "Huka 2" alluvium. Yellow to brown slightly silty medium to coarse highly quartzose sand: iron oxide cemented in places, and minor gravel. Finer horizons at:
 - 40-41 m possibly a primary tephra.
 - 49-51 m probably deposits indicative of a swamp.
 - 69-80.5 m impermeable blue/grey slightly gravelly silty fine/medium sands (?delta) grading down to tightly laminated pure lakebed silts. Mostly diatomaceous and with fine plant fragments, including beech leaves.

X		Summ Bo	ary Log of rehole		Hole No. JessieM Sheet No.	artin 1 of 1	(1)
Location: 27 R.L. Ground Lev Logged By: Depth (m) 0 5 10 15 20 25 30	91569.6, 6 el: W Es Graphic Log	0 - 9 Unconsolidat (post ~16 ka) fall Oktaina Volcanic (Tephras - GRAVEL 9 - 11 Reworked p Formation - SAND 11 - 16 Fine-grainw white coloured dia 16 - 24 Non-welde Eruption. Grainsiz SANDY GRAVEL 25 - 28 Unconsolita and ash as part of sediments - COAF (Primary Aquifer) * Water bearing fir water level to 9.97	Driller: Drill Method Date Drilled: Description Description Description Description Centre. Rotorua Subgroup - Jumice alluvium of the Hinuera M GRAVEL ed and impervious, cream to atomite - DIATOMITE ad, ignimbrite from the Rotoiti e varies from ash to lapilli dated, reworked pumice lapilli is a package of alluvial RSE TO MEDIUM SAND om 27m, with a rise in static m	24 - 25 Uncon (Rotoehu Ash Rotoitit Erupti (Aquitard)	thers Drilling Ltd 8/02/05 solidated fine ash deport from the early stages of on - FINE SAND and SIL	sit of the _T	
Client: Environr	nent B	ay of Plenty	Project: EBO	P Lake R	otorua nutrient	study	

Figure 2.7 Geological summary of piezometer D3.

Figure 2.8 Geological summary of piezometer DP-2.

2.4 References

- Black, T.M., Shane, P.A.R., Westgate, J.A., Froggatt, P.C., 1996. Chronological and palaeomagnetic constraints on widespread welded ignimbrites of the Taupo volcanic zone, New Zealand, Bulletin of Volcanology, 58 (2-3), p. 226-238, 1996.
- Fransen, P.J.B. 1982. Geology of the western Mamaku Plateau and variations in the Mamaku Ignimbrite. Unpublished MSc thesis, University of Waikato, Hamilton.
- Milner, D.M., Cole, J.W., Wood, C.P. 2003. Mamaku Ignimbrite; a caldera-forming ignimbrite erupted from a compositionally zoned magma chamber in Taupo volcanic zone, New Zealand, *Journal of Volcanology and Geothermal Research 122(3-4)*: 243-264.
- White, P.A., Reeves, R.R., Cameron, S.G. and Daughney, C., 2004(a). Proposed field programme to define groundwater and nutrient flow into Lake Rotorua. Geological and Nuclear Sciences client report 2004/130a.
- White, P.A., Cameron, S.G., Kilgour, G., Mroczek, E., Bignall, G., Daughney, C. and Reeves, R.R., 2004(b). Review of groundwater in the Lake Rotorua catchment. GNS Client Report 2004/130.

3.0 PUMP TEST RESULTS

3.1 Results of pump test on Dibley bore (DP-1)

3.1.1 Introduction

A 24 hour pump test was undertaken on the Dibley bore on 13 and 14 December 2004. The purpose of the pump test was to provide aquifer transmissivity and storativity values of the Mamaku Ignimbrite aquifer for input into a groundwater flow model that is to be developed to assist with resource management of the Lake Rotorua groundwater catchment. The pump test was commissioned by Environment Bay of Plenty as part of a larger Lake Rotorua groundwater catchment study undertaken by GNS. The pump test was undertaken by Bayliss Bros. drilling from Hawke's Bay. The bore was pumped at a constant rate of 3 l/s. Groundwater levels were measured in three bores (Figure 3.1) by automatic recorder at minute interval during the pumping and recovery phase of the test.

The pumping and observation bore details are summarised in Table 3.1 and 3.2. The pumping bore draws water from the Mamaku Ignimbrite aquifer. At the time of the pump test the bore was 113.2 m deep and the bottom of the aquifer had not been penetrated by the bore. The casing was set at 50.7 m depth and the bore was open hole to 113.2 m depth. After completion of the pump test the Dibley bore was deepened to 151.5 m which still did not penetrate the base of the Mamaku Ignimbrite. The top of the Mamaku Ignimbrite at the Dibley bore is approximately 5 m below ground surface. The total thickness of the Mamaku Ignimbrite at the test area is not known as no local bores have penetrated the base of the formation.

Groundwater level measurements recorded during the drilling of Dibley bore and results of pump test analysis indicate the Mamaku Ignimbrite aquifer is confined or semi-confined at the test site. Water-bearing sediment was encountered at 67.7 m depth (Chapter 2.0), giving 45.5 m of saturated thickness penetrated by the Dibley bore at the time of the pump test. During drilling of the bore, groundwater level rose 8.5 m above the top of the water-bearing sediment to 59.2 m depth, indicating the occurrence of lower permeability or unfractured sediment overlying the aquifer. The saturated thickness is greater than 83.8 m, based on the top of the groundwater bearing sediment at 67.7 m depth and completed bore depth of

151.5 m. An assumed aquifer thickness of 100 m has been used in the pump test analysis for adjustment for partial penetration effects. The geological log of Dibley bore (Figure 2.2) describes the water-bearing sediment at 67.7 m depth as partially welded ignimbrite with common cooling joints.

The geological log of Dibley bore indicates the Mamaku Ignimbrite aquifer has variation in permeability over the thickness of penetrated aquifer. A water bearing fracture occurs between 67.7 m to 68 m depth. The ignimbrite was non-water bearing from 68 m to 73.5 m depth. Water bearing fractures occurred from 73.5 to 90 m depth and water bearing non-welded ignimbrite sediment from 90 m to 122 m depth. A change in permeability is indicated at 122 m to 123 m due to a fine sand and silt layer and again from 125 to 151 m due to a fine to medium sand layer. The lateral continuation of layers with different permeability away from the Dibley bore are unknown.

The two observation bores (Obs 1 and 2, Table 3.1) appear to only partially penetrate the Mamaku Ignimbrite aquifer, based on observation bore depth and thickness of Mamaku Ignimbrite at Dibley bore. Observation bores 1 and 2 are 89.9 m and 89.5 m deep, respectively. The Mamaku Ignimbrite at the Dibley bore is greater than 146.5 m thick.

Bore	Local ID	Purpose	Depth	Static	Distance from pumping bore	Screen or open hole interval	Maximum drawdown
Unit			m	mbmp	m	mbgl	m
Dibley	Dibley pumped	Pumping	113.2	52.22	-	50.7 - 113.2	2.566
Obs 1	Dibley Obs	Observation	89.9	62.415	94.9	5 - 89.9	0.107
Obs 2	Price	Observation	89.5	74.562	1850	?	Nil

Table 3.1Summary of pumping and observation bore details.

Table 3.2	Bore location.
-----------	----------------

Bore	Easting	Northing	GPS method
Dibley	2788703.8	6346607.6	RTK
Obs 1	2788613	6346572	Handheld
Obs 2	2790107	6347815	Handheld

3.1.2 Pump test results

All groundwater level data used in the pump test analyses were corrected for changes in barometric pressure that occurred during the test.

Bore	Analyses	Transmissivity		Storativity
		Drawdown	Recovery	
Pumping bore	Theis recovery		600 m ² /day	
Obs 1	Hantush (1961) (partial penetration of a confined aquifer)	600 m ² /day	815 m ² /day	4 x 10 ⁻³

Table 3.3Summary of aquifer transmissivity and storativity.

Maximum drawdown in the pumping bore after 24 hours pumping was 2.566 m (Table 3.1, Figure 3.2). Groundwater level recovered to within 98.5% of pre-pump test static approximately 17 hours after pumping ceased. Transmissivity calculated from the pumping bore recover data is $600 \text{ m}^2/\text{day}$ (Table 3.3, Figure 3.3).

Maximum drawdown in Obs 1 was 0.107 m (Table 3.1, Figure 3.4). Transmissivity calculated from drawdown data was about 600 m²/day using the Hantush (1961) solution for partial penetration of a confined aquifer and 815 m²/day (Table 3.3, Figures 3.5 and 3.6). The value of 600 m²/day calculated from Obs 1 drawdown data is considered to be the most reliable indication of aquifer transmissivity as this was the only observation bore that was affected by pumping. Aquifer storativity is calculated to be 4 x 10⁻³ from Obs 1 drawdown data (Table 3.3, Figure 3.5).

The Hantush (1961) analyses for partial penetration of a confined aquifer with r/B = 0.2 and Kz/Kr = 1, provided the best fit to Obs 1 drawdown data (Figure 3.6). The data deviates from the Hantush curve at about 450 minutes after the start of pumping (Figure 3.5), indicating the aquifer is either leaky-confined or the cone of depression intersected a recharge boundary after approximately 450 minute pumping. The reduced drawdown is not considered to be caused by a regional rise in groundwater level during the test, as the groundwater level rise was not observed in Obs 2 (Figure 3.7), which is located outside of the area of influence of pump test. The reduction in drawdown can not be attributed to rainfall as no rain was recorded at the EBOP Kaharoa rainfall site (Figure 3.8), located approximately 9 km to the northeast of Dibley bore, during the pump test period or during the preceding seven days.

About 800 minutes into the drawdown phase of the pump test there is another upward deflection in the data indicating a reduction in recharge or a lower permeability boundary. These changes may be a function of aquifer lithology or the partial penetration circumstances of both the test and observation bores. Despite these effects, the indicated transmissivity and storativity values appear to be reasonably valid.
An accurate estimate of aquifer hydraulic conductivity can not be made as aquifer thickness is unknown. An assumed aquifer thickness of 100 m provides a hydraulic conductivity value of 6 m/day.

This hydraulic conductivity volume is near the top of the range of literature values for hydraulic conductivity of a fractured igneous or metamorphic rock ($\sim 0.01 \Rightarrow 10 \text{ m/d}$) and at the lower end of the range for fractured basalt rock ($0.01 \Rightarrow 1000 \text{ md/}$) (Freeze and Cherry, 1979).

Figure 3.1 Location map of DP-1 pump test bores.

Figure 3.2 Pumping bore drawdown and recovery.

Figure 3.3 Pumping bore Theis recovery analyses.

Figure 3.4 Obs 1 bore drawdown and recovery.

Figure 3.5 Obs 1 Hantush and Jacob (1955) leaky aquifer analysis.

Figure 3.6 Obs 1 Theis recovery analysis.

Figure 3.7 Groundwater level at observation bores 2 and 3.

Figure 3.8 Daily rainfall at Kaharoa during December 2004.

3.2 Results of pump test on JMM Park bore (DP-2)

3.2.1 Introduction

A 12 hour pump test was undertaken on the JMM Park bore on 20 and 21 January 2005. The bore was pumped at a constant rate of 5 l/s. Groundwater levels were measured in two bores (Figure 3.9, Tables 3.4 and 3.5) by automatic recorder at minute intervals during the pumping and recovery phase of the test.

At the time of the pump test the JMM Park bore was at 36 m depth. After the pump test the bore was deepened to 80.5 m to investigate the thickness of the Huka Group sediment. Bore details described in this pump test section pertain to bore construction at the time of the test. The pumping bore draws water from a silty, sandy, gravely pumice aquifer within the Huka Group sediments. The aquifer material is described as unconsolidated, reworked pumice lapilli and ash (Figure 2.8). The pumping bore was screened over a 12 m length from 24 m to 36 m depth. At the time of the pump test the aquifer was only partially penetrated.

31

Subsequent deepening of the bore indicated the aquifer is 43 m thick and extends to 69 m depth. At 69 m depth the aquifer overlies a low permeability blue grey silt and fine sand sediment.

During drilling of the JMM Park bore water-bearing sediment was not encountered until 25 m depth. Water level rose to 9.77 m depth after the aquifer had been penetrated, indicating the aquifer is confined at the JMM Park bore site. The overlying confining sediment is indicated by the drilling report (Chapter 2.0, this report) to be the 17 m thickness of sediment from 11 m to 26 m depth, consisting of (Figure 2.7):

- 7 m thickness of fine grained diatomite between 7 and 14 m depth,
- 5 m thickness of reworked Rotoiti Ignimbrite pumice deposit between 14 and 19 m depth, and
- 5 m thickness of silty gravely sand from a 20 to 25 m depth.

The JMM Park Obs 1 bore is located 29 m to the northwest of the pumping bore (Figure 2.7). Obs 1 was drilled to 28 m depth. The screen was installed from 20 m to 26 m depth. The 2 m length of open hole from 26 m to 28 m was left open and is likely to have collapsed. The bore log indicates that groundwater was encountered between 24 m and 25 m depth within ash and lapilli sediment, but the higher permeability part of the aquifer was not penetrated until 27 m to 28 m depth. As the screen is set between 20 m and 26 m it suggests the bore is not screened in the main part of the aquifer. However, hydraulic connection with the aquifer is indicated as static groundwater level in Obs 1 is 10.09 m below top of casing. This is very similar to static groundwater level of 9.77 m below top of casing in the pumping bore.

Bore	Local ID	Purpose	Depth	Static water level	Distance from pumping bore	Screen or open hole interval	Maximum drawdown
Unit			m	mtoc	m	mbgl	m
JMM Park	JMM Park	Pumping	36	9.77	-	24 - 36	3.398
pumping							
JMM Park	Piezometer	Observation	28	10.09	29	20 - 26	0.432
Obs 1	D3						

Table 3.4Summary of pumping and observation bore details.

32

Bore	Easting	Northing	GPS method of bore location
JMM Park pumping	2791569.6	6342323.5	RTK
JMM Park Obs 1	2791541.2	6342329.3	RTK

Table 3.5Bore location.

3.2.2 Pump test results

All groundwater level data used in the pump test analyses were corrected for changes in barometric pressure that occurred during the test.

Table 3.6Summary of aquifer transmissivity and storativity.

Bore	Analyses	Transm	Storativity	
		Drawdown	Recovery	
JMM Park Pumping	Theis recovery		239 m ² /day	
JMM Park Obs 1	Hantush (1964) (partial penetration of a leaky confined aquifer)	200 m ² /day	290 m ² /day	2.0 x 10 ⁻³

Maximum drawdown in the pumping bore after 12 hours pumping was 3.398 m (Table 3.4, Figure 3.10). Groundwater level recovered to within 99% of pre-pump test static approximately two hours after pumping ceased. Transmissivity calculated from the pumping bore recover data is $239 \text{ m}^2/\text{day}$ (Table 3.6, Figure 3.11).

Maximum drawdown in Obs 1 was 0.432 m (Table 3.4, Figure 3.12). Transmissivity calculated from drawdown data was 200 m²/day and 290 m²/day from recovery data (Table 3.6, Figures 3.13 and 3.14). The value of 200 m²/day calculated from Obs 1 drawdown data is considered to be the most reliable indication of aquifer transmissivity as observation bore drawdown data provides the best assessment of bulk aquifer hydraulic properties. Aquifer storativity is calculated to be 2.0×10^{-3} from Obs 1 drawdown data (Table 3.6, Figure 3.14).

The Hantush (1964) analyses for partial penetration of a leaky confined aquifer with r/B = 0.5 and Kz/Kr = 0.04 provided the best fit to Obs 1 drawdown data (Figure 3.14).

Figure 3.9 Location map of the DP-2 pump test bores.

Figure 3.10 Pumping bore drawdown and recovery.

Figure 3.11 Pumping bore Theis recovery analyses.

Figure 3.12 Obs 1 bore drawdown and recovery.

Figure 3.13 Obs 1 Hantush and Jacob (1955) leaky aquifer analysis.

Figure 3.14 Obs 1 Theis recovery analysis.

3.2.3 Conclusions

At the pump test site, the Mamaku Ignimbrite aquifer is considered to be leaky-confined, or confined with intersection of a recharge boundary condition after approximately 450 minutes pumping.

Aquifer transmissivity and storativity for the Mamaku Ignimbrite is calculated to be 600 m^2/day and 4 x 10^{-3} , respectively. An assumed aquifer thickness of 100 m provides a hydraulic conductivity of 6 m/day.

At the pump test site, the Huka Group Sediment aquifer is considered to be leaky-confined.

Aquifer transmissivity and storativity for the Huka Group Sediment is calculated to be 200 m^2/day and 2.0 x 10^{-3} , respectively. Aquifer thickness of 43 m provides a hydraulic conductivity value of approximately 4.5 m/day.

3.2.4 Mamaku Township pump test

GNS was provided with results of a pump test undertaken at Mamaku township production bore (Bore ID: RDC bore 3 or 2102) on 21 and 22 September 2002. The pump was undertaken by Rotorua District Council. A copy of the pump test data are presented in Appendix 3. No analyses of the pump test data was provided to GNS. Review and analyses of the pump test data by Stewart Cameron (GNS Hydrogeologist) found the data inappropriate for obtaining reliable analysis results. Pumping rate during the test was not able to be held constant due to falling head in the pumping bore. Intermittent simultaneous pumping from RDC bore 4 during the pumping and recovery phases appear to have affected results. No drawdown interference was recorded in monitored observation bores. GNS recommend that the pump test be repeated if an indication of aquifer hydraulic properties are required in the Mamaku township area.

3.2.5 References

Freeze, A.R., Cherry, J.A., 1979. Groundwater. Prentice-Hall Inc. NJ.

- Hantush, M.S., 1961. Aquifer tests on partially penetrating wells. J. Hydraul. Div., Proc. Amer. Soc. Civil Engrs., Vol, 87 (HYS), pp. 171-195.
- Hantus, M.S., 1964. Hydraulics of wells. In V.T. Chow (editor) Advances in hydroscienceVol. I., pp. 281-432. Academic Press, NY & London.
- Theis, C.V., 1935. The relation between the lowering of piezometric surface and the rate and duration of discharge of a bore using groundwater storage. Trans. Amer. Geophys. Union, 2, pp 519-524.

4.0 LAKE ROTORUA CATCHMENT BORE SURVEY

4.1 Introduction

White et al (2004) identified gaps in data required to develop groundwater models for the Lake Rotorua catchment. Fundamental to the development of any groundwater model is knowledge of groundwater levels in the area of interest, and their relationship to other water bodies such as lakes and rivers.

Hydraulic relationships of these bodies can provide key information such as:

- Groundwater flow directions.
- Groundwater divides.
- Areas of groundwater recharge and discharge.

These are all important in the context of this study where GNS wants to define groundwater catchments (and sub-catchments) and potential pathways for contaminants.

This section of the work has three components:

- Identifying existing bore holes not in the EBOP database, in areas of interest to EBOP.
- Measuring water levels in areas where data are scarce. This also includes field checking key water levels recorded in the EBOP database.
- Surveying bores to obtain accurate elevation data in key areas so accurate relative level (above mean sea level) water levels could be calculated.

4.2 Methods

The data and potentiometric surface map produced in White, et al. (2004) was used as a basis for further work. The data used to produce this is dominated by data stored in the EBOP database. The new work focused on EBOP's high priority areas to the west of, north of and to the east of Lake Rotorua.

4.2.1 Bore locating

Locating bores not in the EBOP database, and, examining some existing bores was required for two main purposes:

- Pump tests bores needed to be identified that could be used as either a pumping bore or observation bore for the pump tests. If suitable bore(s) could be identified, this would either significantly decrease the cost of the drilling programme, or, enable other holes to be drilled.
- 2) **Water level/chemistry** bores needed to be identified where water level and/or water chemistry coverage was scarce and/or in areas of high priority to EBOP.

Four key areas were identified to locate/check bores:

- Near Ngongotaha township. This was particularly important to locate/check bores that could be used for the 2 pump tests (Huka formation and the Mamaku Ignimbrite) scheduled for this area.
- 2) North of Lake Rotorua. This was important as not only is there a lack of data, but is also in EBOP's high priority area.
- 3) East-south east of Lake Rotorua. This was important as there was a lack of data.
- 4) South of Rotorua. This was given low priority.

Door knocking and a leaflet drop were the two techniques used to locate/check bores. Door knocking involved asking people (mainly farmers) if they had a bore on their property. If a bore was located, as much information as possible was recorded about the bore. Where possible, GPS co-ordinates were also collected. The door knocking campaign was done by EBOP, sub contractors to EBOP and GNS staff. This was done in all 4 areas identified above, although most of the effort was directed to areas 1 to 3.

The leaflet drop was an EBOP initiative that was designed and run by EBOP. The leaflet asked property owners/occupiers if they knew of any groundwater bores/springs on their property or close by. Responses were sent directly to EBOP to collate. The leaflet drop focused on area 2 only.

4.2.2 Measuring water levels

New water level measurements were taken from:

- Some bores found in the bore search.
- Newly drilled bores.
- Selected existing bores in the EBOP database (with water level data), which were in areas of high importance (i.e. the Hamurana area) to check that the water level in the database is correct.
- Where possible, bore sites selected for water quality/water dating.

In many cases, access to the bore head was restricted by pumps (operating and abandoned), pipe work or casing finish. Rotorua Farm and Industrial Pump Services was contracted to gain access to bores (with the owners permission) where access to a borehole was considered by GNS to be critical. Water levels were measured with either a Heron or Solinst water level meter to a datum (usually top of steel casing). Some water levels were obtained from the property owners memory where bore access was not obtained.

4.2.3 Bore survey

New bores, selected springs and selected existing bores were surveyed to obtain an accurate NZMG easting, NZMG northing and elevation (relative to mean sea level) using Leica SR530 GPS receivers recording in differential mode. Elevations are required so that depth to water data (water levels) can be reduced to the same datum and easily be compared to other water level data and other hydrological features.

The survey is designed to produce data suitable for a regional water level map. Most elevations used to reduce depth to water data stored in the EBOP database in White et al (2004) were obtained from a 20 m grid digital terrain model. This means some elevations may be up to 20 m in error and eastings/northings may be up to 100 m in error. The GPS survey was designed to have maximum elevation errors of 0.5 m and errors in the eastings and northings of 5 m.

The GPS was set up as close to the site as possible (usually, right over the bore or spring) and left to record in differential mode for at least 10 minutes. Cases where the GPS could not be

set over the feature are noted, and additional estimated errors to the site location are added.

Data from the GPS were reduced in Leica SKI-Pro v3.0 software using data from the RGMK (Makatiti), TRNG (Tauranga) or the TAUP (Taupo) GPS base stations. Five benchmarks from the greater Rotorua area were included in the GPS survey to relate the measured GPS geoid elevation to a relative level (RL) elevation. This was done by relating measured GPS elevations to a simple surface modelled from the GPS benchmark measurements. GNS estimates RL elevation errors to be ± -0.3 m using this technique.

4.3 Results

Appendix 4.1 summarises the new bores found and results of the surveying. 104 new bores and/or springs were located in the greater Rotorua area. This includes work for this project and a small amount of work for a GNS research project around Lake Rotoiti and excludes the work in Chapter 6 of this report. The Lake Rotoiti work is included here as it has the potential to influence the piezometric map around Lake Rotorua, particularly in the north east corner.

43 sites have been surveyed (Figure 4.1). Of these, 38 were bores newly located, one existing bore and four newly drilled bores. Note that one of these new bores (site 10110) was drilled by EBOP as part of another project immediately after the other three bores of this project had been drilled.

Water level data used by White et. al. (2004) is updated to include the new information above to produce another potentiometric surface map of the Lake Rotorua catchment (Figure 4.1). Appendix 4.2 summarises data used to make the piezometric map. Techniques used to constrain/develop the potentiometric surface map include:

- Adding spot heights representing the mean lake level around the lake edges as described by White, et al. (2004).
- Most bore elevations have had elevations estimated from a digital terrain model. Some bore elevations have been estimated from the 1:50,000 map.
- Bores that have a depth to water recorded in the EBOP database as 0 have been deleted.

• In general, the depth to water of the shallow bore is taken where multiple water levels exist at a location (this can happen for bores at approximately the same grid reference).

4.4 Limitations

The potentiometric surface map (Figure 4.1) is designed to be viewed at a regional scale and give an overview of the general groundwater flow directions. Use and interpretation of the data should consider:

- The bulk of the data were obtained from the EBOP and Environment Waikato (EW) bore databases.
 - In most cases, the data has not been checked by GNS.
 - In most cases, the water levels have been obtained from drillers reports. Water levels may have been affected from the drilling process.
 - The water levels obtained from the drillers reports probably represent the water level in the aquifer the bore is completed in. This may not be the top aquifer.
 - Any long term trend in the water levels may affect the regional potentiometric surface map given that the water levels in the database have been measured over a period of approx 60 years.
- 2) Bore elevations estimated from the digital terrain model and from the 1:50,000 map have estimated errors of up to 20 m.

4.5 References

White, P.A., Cameron, S.G., Kilgour, G., Mroczek, E., Bignall, G., Daughney, C. and Reeves, R.R., 2004. Review of groundwater in the Lake Rotorua catchment. GNS client report 2004/130.

5.0 GROUNDWATER QUALITY AND WATER DATING

5.1 Introduction

EBOP are interested in defining current nutrient concentrations and time it takes groundwater to move nutrients through the aquifer systems to Lake Rotorua. The nutrients in the Lake Rotorua catchment are transported via groundwater flow or spring fed streams. To characterise nutrient concentrations in the groundwater and estimate the time lags between nutrient addition to the groundwater and nutrient arrival at Lake Rotorua, both a water quality and water dating programme was initiated in unison.

White et al (2004a) identified gaps in water quality data required to characterise groundwater in the Lake Rotorua catchment. White et al (2004b) recommended 30 new/existing sites that should be sampled as part as the field programme.

Tritium, Chlorofluorocarbons (CFCs) and Sulphur hexafluoride (SF₆) are isotopes (tritium) or contaminants (CFC's, SF₆) in the water used to obtain the mean residence time of groundwater. The mean residence time is taken to be an average "age" of the water since the water was recharged into the groundwater aquifer.

Morgenstern et al (2004) uses water dating with water quality (including nutrients) to estimate nutrient travel times in groundwater bores on the north-west catchments of Lake Rotorua and in major streams. Data collected in this report extends the water dating/water quality work in groundwater bores and streams to cover more of the high priority catchments defined by EBOP, and to resolve sampling and water age issues associated with the Morgenstern et al., (2004) sampling round.

5.2 Methods

5.2.1 Site selection

Site selection can be categorized into two categories.

• New sites, and,

• Sites that needed to be re-sampled as suggested by Morgenstern et al (2004).

New sites were selected based on:

- Water quality data gaps identified by White, et al. (2004a) in conjunction with data gaps from Morgenstern, et al. (2004)
- Sites selected were generally close to Lake Rotorua to establish the current nutrient flux
- Data gaps in EBOP's high priority areas were given high priority. The high priority area for EBOP is defined approximately as catchments from Mt Ngongotaha, around Lake Rotorua to the north, and then down to the south east corner of Lake Rotorua
- Budgetary constraints

New sites are a combination of existing bores, drive point piezometers, temporary piezometers or springs. Drive point piezometers are small diameter stainless tubing with a pointed end that is screened, used to sample shallow groundwater. Drive point piezometers enable small volumes of water to be sampled. Temporary piezometers are hand augured holes which went below the water table. PVC screen and casing was put down the hole to stop the hole from collapsing. Temporary piezometers enable a large pump to be put down the PVC casing enabling larger volumes of water to be sampled. In this project, the drive point and temporary piezometers were used to sample groundwater approximately 0.5 m below the water table. Near lake springs sampled are assumed to be representative of local groundwater entering Lake Rotorua.

Morgenstern, et al. (2004) identified several springs and streams that needed to be re-sampled to improve the nutrient load calculations into Lake Rotorua. Re-sampling was recommended because:

- Morgenstern, et al. (2004) sampled springs and streams in dry conditions. This will most likely affect the age (much older water discharges into the streams at this time) and therefore may not give an age which is representative for the average of the year.
- Morgenstern, et al. (2004) only sampled major springs where large spring complexes existed (e.g. Hamurana). Other sub springs should also be sampled to obtain an age range /nutrient range coming out of the spring complex.

These recommendations formed the basis of re-sampling some springs and streams.

5.2.2 Sampling/analyses

Nine springs, 12 existing bores (including bores drilled as part of the programme), three streams and five drive-point/temporary piezometers were sampled between 13 December 2004 and 14 May 2005 as part of the field programme. Sampling methodology and the bottles collected at each site varied depending on the analyses required (Table 5.1). In most cases, electric conductivity, pH, water temperature, dissolved oxygen (DO), turbidity and oxidation – reduction potential (ORP) of the groundwater were measured in the field prior to collecting the sample.

Analyses	Bottles collected
Nutrients	100 ml PE filtered, 100 ml PE raw, 250 ml PE raw with H_2SO_4 -
	all chilled
Anions/cations	100 ml PE filtered, 100 ml PE filtered + HNO ₃ , 250 ml PE raw,
	all chilled
Tritium	1.1 l Nalgene
CFC/SF ₆	2 x 100 ml glass, 1 x 11 Schott (or 1 x 21 amber)

Table 5.1Bottles collected for each analyses.

Notes:

• PE = polyethylene bottle

• Where samples were collected for a full chemistry analyses, both the nutrient and anion/cation bottles were collected.

• Tritium, anion/cation and nutrient bottles (without preservative) were rinsed 3 times with appropriate water before filling.

Spring samples were collected at the point they emerge from the aquifer using a grab technique. Samples collected for CFC/SF_6 were sampled by placing the bottle in the spring outlet and fresh uncontaminated water was sucked through the bottle until the water was displaced 3-5 times using nylon tubing attached to a vacuum pump. Bottles were then quickly screw-sealed below the water surface.

Water samples collected from bores were made after measuring the water level (where possible), and then purging the bore of at least three casing volumes prior to sampling. Sites Murphy, Kiriona and Patchell are domestic bores and already had pumps installed. The existing pumps were used to purge and sample these bores. A portable Grundfos MP1 submersible pump was used to sample at sites Britton, JMM shallow, RDC Pohutukawa Dr – deep and Wharenui-control. A whale pump was used to sample site JMM deep. The driller's pump/pump

contractor's pump was used to sample sites Blimler, Dibley bore @ 80 m (immediately after the pump test) and Dibley bore @ 150 m. The Wallace bore was "grab sampled" with a Teflon bailer due to the large cost of installing a pump to obtain a groundwater sample. Given that the bore could not be purged, GNS still sampled this site due to its location immediately north of Hamurana springs – in one of EBOP's high priority areas. Water chemistry results from this site should be used only as an indicator of nutrient concentrations.

"Grab samples" were collected from the three stream sites.

Drive point piezometers and temporary piezometers were used to sample shallow groundwater near Lake Rotorua where a suitable existing site could not be found. Drive point piezometers are driven into the ground until the water table has been intersected. Site 3 was the only site sampled with a drive point piezometer. The drive point was driven down to 1.4 m and was sampled by applying a vacuum to disposable tubing inserted down the drive point. The drive point was purged three casing volumes before a sample was collected.

Temporary piezometers are hand augured holes drilled below the water table to enable temporary casing and screen to be inserted. After collecting the sample, the screen and casing are removed, and the hole is filled in. The intention of temporary piezometers was to allow a pump to be put down the casing and enable larger volumes of water to be pumped compared to a drive point piezometer. This allows water samples to be collected for CFC and SF₆ as air can be excluded during the sampling process. However, high sediment loads at three of the four sites (Site 8, Kaska-DP and Site 52) prevented a large pump from been used, and therefore these sites could not be sampled for CFC's and SF₆.

Water samples were sent to their respective laboratories as soon as possible after the sampling. Three laboratories were used to analyse the water depending on the analyses suite.

- Nutrients total ammoniacal-N, total kjeldahl Nitrogen (TKN), nitrate-N + nitrite-N (TON), nitrate-N, nitrite-N, dissolved reactive phosphorus and total phosphorus were sent to R.J. Hill laboratories
- Anions/cations Alkalinity (as HCO₃), pH, sodium, potassium, calcium, magnesium, iron (dissolved), manganese (dissolved), silica (as SiO₂), fluoride, chloride, bromide, sulphate, and conductivity at GNS, Wairakei.

• **Isotopes** – CFC, SF₆ and tritium at GNS, Gracefield.

Appendix 5.1 summarises results and the methods used for all analyses.

5.2.3 Re-sampling

The nutrient samples for 10 sites (Site 8, Kaska-DP, Wallace, Site 41, JMM shallow, JMM deep, Site 52, RDC Pohutukawa Dr – deep, Wharenui-control and Wallace-springs) collected between 23/2/2005 and 25/2/2005 went missing between the courier company (NZ Couriers) and R.J. Hill Laboratories. An internal investigation by both GNS and R.J. Hill laboratories could not clearly establish where the samples went missing once they were dispatched from GNS, Wairakei. The samples were not recovered.

The 10 sites were re-sampled 26/4/2005 - 4/5/2005 for nutrients and anions/cations only. A temporary piezometer at Site 8 had to be re-augured as the exact location of the hole could not be found. The new site was probably within a 5 m of the site augured on the first sample run.

All samples for nutrients were immediately submitted to R.J. Hill laboratories while samples for anions/cations were put on hold at the GNS laboratory. Nitrate-N data for five of the sites from the 1st round of samples submitted to GNS could be obtained from the anion run, even though these analyses were not requested. The four temporary piezometer sites that were repeated (Site 8, Kaska-DP, Site 41 and Site 52) have a second full anion/cation analyses (except alkalinity) given the variability of the field parameters between sampling rounds and differences in nitrate concentrations between the GNS first round samples and the R.J. Hill second round samples. Anion/cation samples for the other sites were not analysed.

5.3 Results

Figure 5.1 shows the locations and types of the sites that were sampled. Table 5.2 summarises the field parameters measured in the field and the chemistry results. The original laboratory reports with methods are in Appendix 5.1.

Interpretation of the data is expected to be done in later phases of the project.

Figure 5.1 Location of sites sampled in the EBOP Lake Rotorua Groundwater study – field programme.

Table 5.2Summary of chemistry results sampled in the EBOP Lake Rotorua Groundwater study – field programme.

											Field result	S					F	RJ Hill I	laborato	ory result	s	
Site ID to use	Easting	Northing	Site type	site name	Sampling notes	Date sampled	sample#	Depth to water	Depth to water datum	pН	Conductivity	Water temperature	ORP 1	Turbidity	DO	NH ₄ -N	TKN	TON	NO ₃ -N	NO ₂ -N	DRP	ТР
								(m)		pH units	uS/cm	°C	mV	NTU	mg/l	g m ⁻³	g m ⁻³	g m⁻³	g m ⁻³	g m ⁻³	g m ⁻³	g m ⁻³
1	2803818	6343298	Bore	Murphy	Some bubbles in water	08/03/2005	14			6.16	79	15.3	347	49	9.1	<0.01	<0.1	1.12	1.12	<0.002	0.207	0.221
2	2802082	6342521	Bore	Britton		21/03/2005	20	2.61	concrete	6.22	139	14	350	4.1	4.4	<0.01	<0.1	2.36	2.36	<0.002	0.083	0.08
3	2801951	6345080	TP	Site 3		08/03/2005	17	1.05	ground	5.82	108	15	357	80	7.2	<0.01	0.2	4.51	4.5	0.004	0.076	0.157
4	2801787	6341894	Bore	Kiriona	Water started off orange, but goes clear.	08/03/2005	15	2.36	steel casing	6.35	94	12.7	314	108	6.7	< 0.01	<0.1	1.16	1.16	<0.002	0.083	0.085
8	2801599	6340298	TP	Site 8	No CFC/SF ₆ due to sediment load interfering with pumping	25/02/2005	12	1.06	ground	6.62	153	19.2	327		9.3							
8	2801599	6340298	TP	Site 8	Repeat sample	26/4/2005	23			6.74	197	14.6	202	460	5	< 0.01	0.3	0.512	0.505	0.007	0.013	0.177
9	2801176	6339385	Spring	Airport spring		10/05/2005				6.3	116	12.2	338		6.4	< 0.01	< 0.1	3.62	3.62	< 0.002	0.093	0.099
11	2800323	6338091	Wetland	Site 11	Algae in sample	08/03/2005	18			6.04	159	14.9	214	11	3	< 0.01	0.8	0.003	< 0.002	<0.002	0.021	0.237
14	2795189	6346929	TP	Kaska-DP	Couldn't do water dating or full chemistry due to sediment load	24/02/2005	8	1.4	ground	6.37	49	17.1	285	>600	6.7							-
14	2795189	6346929	IP	Kaska-DP	Repeat sample	26/4/2005	22			6.72	78	14.6	226	186	0.1	0.23	2.7	0.36	0.358	< 0.002	0.006	0.736
16	2794701	6347717	Bore	Patchell	Sampled water from reservoir	08/03/2005	16	55.88	steel casing	6.48	/1	14.4	334	5	9.4	<0.01	<0.1	2.16	2.16	<0.002	0.039	0.04
18	2799510	6346340	Spring	S73 (Morea spring)	Site approx 200m up stream guily from lake	10/05/2005				5.8	106	10.5	309	1.9	4.4	< 0.01	< 0.1	1.79	1.79	< 0.002	0.053	0.057
21	2795914	6347367	Spring	Hamurana Spring @ water intake		10/05/2005	34			6.67	71	9.0	299	0.5	7.1	< 0.01	< 0.1	0.699	0.697	< 0.002	0.079	0.065
22	2795763	6347307	Spring	Hamurana Spring @#1		09/05/2005	33			6.13	66	0.8	325	1	9.7	< 0.01	< 0.1	0.660	0.000	< 0.002	0.095	0.090
23	2796292	6346867	Stream	Hamurana Spring @#1		09/05/2005	32			61	66	9.0	344	0.8	10.7	< 0.01	< 0.1	0.658	0.656	0.002	0.003	0.007
26	2795580	6349309	Bore	Wallace	Bailed well - no purging	25/02/2005	11	172.37	steel casing	6.85	65	11.6	303	0.0	10.0	< 0.01	< 0.1	0.000	0.000	0.002	0.002	0.000
26	2795580	6349309	Bore	Wallace	Repeat sample	28/4/2005	27		- stool outsing	7.23	62	12.8	322	135		< 0.01	0.2	1.33	1.33	< 0.002	0.024	0.076
28	2792134	6349123	Bore	Blimler	Water level measured by Russell West	02/03/2005	13	81.5	steel casing	6.4	104	12.5	337	51	8.7	< 0.01	<0.1	4.57	4.56	0.009	0.033	0.044
29	2800219.314	6336704.774	Stream	Waingaehe Stream @ Te Ngae Rd (WST-2)	······································	14/05/2005	-		J	6.83	113	13.1	87	9	7.1	< 0.01	0.1	1.45	1.45	< 0.002	0.099	0.109
29	2800219.314	6336704.774	Stream	Waingaehe Stream @ Te Ngae Rd (WST-2)	Collected after rainfall	19/05/2005	U6									0.11	0.2	1.34	1.34	0.002	0.091	0.097
31	2798493	6336914	Wetland	Site 31	Water is clear, yellow, H ₂ S smell	08/03/2005	19			6.21	587	16.8	93	45	3.8	22	24.4	0.006	0.004	< 0.002	3.18	3.42
41	2792178	6341517	TP	Site 41		23/02/2005	5	0.91	around	5.76	112	18.6	397	13.4	0.9							
41	2792178	6341517	TP	Site 41	Repeat sample	28/4/2005	25		J	6.23	118	15.1	321	9.9	5.5	< 0.01	0.2	2.23	2.23	< 0.002	0.006	0.004
42	2786200	6336000	Spring	Te Waireka (Paradise Spring)		13/05/2005				7.1	65	10.7	247	0.6		< 0.01	< 0.1	1.8	1.79	< 0.002	0.028	0.025
43	2788058.292	6346364.997	Bore	Dibbly bore@80m	Sampled straight after pump test	13/12/2004	1			6.08	73	11	357	12.6	8.6	0.01	0.2	2.22		< 0.002	0.05	0.04
44	2788058.292	6346364.997	Bore	Dibbly bore@150m		15/02/2005	2			6.86	70	9.7	331	17	7.5	<0.01	0.2	0.405	0.404	< 0.002	0.06	0.064
45	2791545	6342328	Bore	JMM shallow		23/02/2005	4	10.09	PVC casing	6.05	108	14.7	399	30.2	7.4							
45	2791545	6342328	Bore	JMM shallow	Repeat sample, pH meter not working	04/05/2005	30	10.3	PVC casing		105	12.6	363	7.3	7.4	< 0.01	< 0.1	6.33	6.33	< 0.002	0.052	0.051
46	2791570	6342319	Bore	JMM deep		23/02/2005	3	9.77	PVC casing	6.5	75	11.8	239	78	4							
46	2791570	6342319	Bore	JMM deep	Repeat sample, pH meter not working	04/05/2005	29	9.94	PVC casing		83	11.7	232	6.7	4.6	0.23	0.4	1.68	1.68	< 0.002	0.013	0.015
49	2791832	6345487	Spring	Taniwha Spring		09/05/2005	35			6.6	74	10.9	328	6.1	8.2	< 0.01	< 0.1	1.45	1.45	< 0.002	0.066	0.068
50	2792233	6345372	Stream	Awahou stream		09/05/2005	31			6.27	71	10.3	363	2	9.1	< 0.01	< 0.1	1.26	1.25	< 0.002	0.066	0.069
50	2792233	6345372	Stream	Awahou stream	Collected after rainfall	19/05/2005	U1									0.02	< 0.1	1.28	1.28	0.002	0.06	0.062
52	2792985	6345196	TP	Site 52	No CFC/SF ₆ due to sediment load interfering with pumping	24/02/2005	9	1.34	ground	7.01	172	15.5	170	>600	2.1							
52	2792985	6345196	TP	Site 52	Repeat sample	28/4/2005	28			6.93	133	14.6	187	>600		0.25	17.6	0.095	0.081	0.014	0.017	4.73
53	2799747	6336763	Bore	RDC Pohutukawa Dr - deep		24/02/2005	10	-0.66	ground	6.23	154	13.9	375	0	8							
53	2799747	6336763	Bore	RDC Pohutukawa Dr - deep	Repeat sample	26/4/2005	24			6.28	148	12.7	357	4.1	7.5	< 0.01	< 0.1	6.67	6.67	< 0.002	0.098	0.098
54	2801502	6335693	Bore	Wharenui-control		24/02/2005	6	28.99	PVC casing	6.73	87	13.7	289	9	8.8							(
54	2801502	6335693	Bore	Wharenui-control	Repeat sample	26/4/2005	21	29.24	steel casing	6.99	103	13.6	255	19	8.4	< 0.01	< 0.1	0.68	0.68	< 0.002	0.09	0.105
55	2795258	6348636	Spring	Wallace-springs		24/02/2005	7			6.34	34	12.7	324	n/m	9.3	0.01		1.67		0.000	0.000	10.000
55	2795258	6348636	Spring	Wallace-springs	Repeat sample	28/4/2005	26			6.42	45	10.7	319	10	9.1	< 0.01	0.2	1.65	1.65	< 0.002	0.006	0.021
56	2801026	6335455	Spring	WSP4		12/05/2005				6.22	116	13.9	134	1.8	4.5	< 0.01	< 0.1	0.569	0.569	< 0.002	0.127	0.122

			GNS water/gas laboratory results								GNS Water dating laboratory results																		
Site ID to use	Easting	Northing	Site type	site name	Alkalinity (as HCO3)	рН	Analysis Temperature	Sodium	Potassium	Calcium	Magnesium	Iron	Manganese	Silica (as SiO2)	Fluoride	Chloride	Bromide	Sulphate	Conductivity	/ Nitrate (as N)	Phosphate (as P)	Tritium lat	Tritium ratio	Tritium ratio error	SF6	CFC 11	CFC 11 error	CFC 12	CFC 12 error
					g m ⁻³	pH units	°C	g m ⁻³	g m ⁻³	g m ⁻³	g m ⁻³	g m ⁻³	g m ⁻³	g m ⁻³	g m ⁻³	g m ⁻³	g m ⁻³	g m ⁻³	uS/cm	g m ⁻³	g m ⁻³		TU		pptv	pptv		pptv	
1	2803818	6343298	Bore	Murphy	22	6.24	16	9.3	1.8	4.3	1.7	<0.02	< 0.005	85	0.062	5.9	<0.04	11.3	70	1.2	0.2	403	1.08	0.04	2.75	247.9	1.1	484.1	6.3
2	2802082	6342521	Bore	Britton	43	6.2	24	13.1	4.5	9.1	2.6	< 0.02	< 0.005	73	0.1	6.8	< 0.04	15.8	109	2.3	0.08	405	0.931	0.038	3.73	210.6	7.2	471.8	13.0
3	2801951	6345080	TP	Site 3	27	6	18	9.3	3.5	6.3	2.6	0.26	0.006	70	0.043	7.1	< 0.04	4.4	83	4.7	0.08					í – – – – – – – – – – – – – – – – – – –			
4	2801787	6341894	Bore	Kiriona	41	6.35	17	9.9	2.4	6.4	1.8	0.02	< 0.005	75	0.066	4.8	< 0.04	5.9	69	1.2	0.09	404	1.04	0.04		1			
8	2801599	6340298	TP	Site 8	62	6.16	18	7	4.3	10.7	8.5	0.022	0.077	64	0.07	5.1	<0.10	29	128	0.09	< 0.05	401	1.43	0.06		1			
8	2801599	6340298	TP	Site 8				9.9	4.7	11.4	10.2	1.8	0.22	74	0.098	5.6	< 0.04	36		0.5	< 0.004					1			
9	2801176	6339385	Spring	Airport spring	29	6.44	14	10.4	4.5	6.5	2.3	<0.02	< 0.005	74	0.071	4.7	< 0.04	11.4				412	1.13	0.03	4.11	527.9	14.8	490.7	11.1
11	2800323	6338091	Wetland	Site 11																									
14	2795189	6346929	TP	Kaska-DP																									
14	2795189	6346929	TP	Kaska-DP				4.9	3.4	3.6	0.94	1.3	0.27	31	0.06	5.1	< 0.04	9		0.38	< 0.004					. L			
16	2794701	6347717	Bore	Patchell	26	6.41	18	6.7	2.8	5.4	1.3	<0.02	<0.005	49	0.046	6.1	<0.04	1.1	63	2.3	0.1								
18	2799510	6346340	Spring	S73 (Morea spring)	43	5.17	14	10	6.3	5.6	2.2	<0.02	<0.005	74	0.023	5.9	0.056	2.4				413	1.43	0.06	3.74	1053.1	35.0	3194.0	90.0
21	2795914	6347325	Spring	Hamurana Head Spring																		414	0.631	0.027					
22	2795621	6347367	Spring	Hamurana Spring @ water intake																		409	0.379	0.022					
23	2795763	6347294	Spring	Hamurana Spring @#1																		408	0.529	0.027					
24	2796292	6346867	Stream	Hamurana stream																		407	0.569	0.027					
26	2795580	6349309	Bore	Wallace	19.3	5.99	18	7.2	3.6	2.1	1	<0.02	<0.005	65	0.09	4.5	<0.10	3.3	47	1.3	<0.05	400	1.41	0.04					
26	2795580	6349309	Bore	Wallace																									
28	2792134	6349123	Bore	Blimler	22	5.86	13	9.6	2.2	5.3	2.5	0.036	<0.005	39	0.032	7.9	<0.04	4.1	117	4.7	0.04	402	1.22	0.04		└─── ↓			
29	2800219.314	6336704.774	Stream	Waingaehe Stream @ Te Ngae Rd (WST-2)																						⊢			
29	2800219.314	6336704.774	Stream	Waingaehe Stream @ Te Ngae Rd (WST-2)																		443	0.526	0.030		⊢			
31	2798493	6336914	Wetland	Site 31																						L			
41	2792178	6341517	TP	Site 41	38	5.06	14	4.9	5.1	12.5	1.2	<0.02	< 0.005	24	0.03	4	<0.10	8.5	80	1.3	<0.05	396	1.72	0.04	4.74	161.0	15.1	571.2	5.4
41	2792178	6341517	TP	Site 41				4.7	5.4	11.9	1.5	<0.02	<0.005	26	0.023	3.8	<0.04	8.8		2.2	<0.004					⊢−−−			
42	2786200	6336000	Spring	Te Waireka (Paradise Spring)							-			10								416	1.37	0.04					
43	2788058.292	6346364.997	Bore	Dibbly bore@80m	24	5.98	14	8.5	2.2	4.2	2	<0.02	<0.005	40	<0.05	6.6	<0.10	4.7	98	2.22		392	1.19	0.04	2.08	233.4	0.8	633.6	81.9
44	2788058.292	6346364.997	Bore	Dibbly bore@150m	43	6.82	15	12.2	0.53	2.8	1.9	<0.02	0.008	68	0.1	5.5	<0.10	1.3	63	0.39	0.08	393	0.110	0.018	0.21	162.5	49.1	478.4	151.0
45	2791545	6342328	Bore	JMM shallow	19	5.17	13	11.5	5.2	4.2	1.9	0.034	0.014	76	0.09	6.7	<0.10	0.84	80	>5	<0.05	395	1.16	0.04	2.89	248.5	18.6	513.4	65.9
45	2791545	6342328	Bore	JMM shallow		4.00						1.0		50	0.40		0.40				0.05	00.4	1.00	0.04		┍───┼			
46	2791570	6342319	Bore	JIMIM deep	23	4.99	14	8.2	3.3	2.8	2.1	1.3	0.34	56	0.16	6.4	<0.10	3.2	60	2	<0.05	394	1.32	0.04		, +			
40	2791570	0342319	Bore	JiMiM deep																		440	0.754	0.000		·			
49	2791832	0345487	Spring																			410	0.751	0.032					
50	2792233	0345372	Stream	Awahou stream																		400	0.040	0.000		+			
50	2792233	0345372	Stream	Awahou stream	00	0.44	47	44.4	2	10.5	2.0	10	0.04	50	0.40	0.5	-0.40	2.4	440	.0.02	.0.05	438	0.843	0.033		+			
52	2792985	6345196		Sile 52	90	0.41	17	14.1	3	13.5	3.0	1.2	0.31	52	0.13	0.0	<0.10	3.1	113	<0.03	<0.05	398	0.930	0.028		+			
52	2192900	6226762	I P Boro	BDC Pobutukowa Dr. doon	26	6.02	10	14.7	2.4	14.2	3.1	2	0.00F	49	0.027	0.1	<0.04	19.3	100	0.002	U.∠1 ∠0.05	200	1.21	0.04	2.06	252.0	22.7	690.1	40.2
53	2199141	6336762	Bore	RDC Pohutukawa Dr - deep	20	0.02	10	14.7	5.2	0.0	3.1	<0.02	<0.005	13	0.1	9.1	<0.10	13.5	109	+ +	<0.05	299	1.21	0.04	2.00	353.9		000.1	40.5
54	2801502	6335602	Bore	Wharepui-control	20	6.2	10	0.0	2.2	20	2.2	0.056	0.014	60	0.14	5.5	<0.10	10.5	65	0.60	0.07	307	0.150	0.020	1 1 /	220.2	22.0	600 /	34.8
54	2801502	6335602	Bore	Whatenui-control	29	0.2	10	9.0	3.3	ა.ი	2.2	0.056	0.014	69	0.14	5.5	<0.10	10.5	00	0.09	0.07	331	0.150	0.020	1.14	220.2	22.0	000.4	34.0
55	2705259	6348636	Spring	Wallace-springs																+						+			
55	2705250	6348636	Spring	Wallace-springs	45	6.45	20	12 5	26	4	20	<0.02	<0.00F	02	0.2	70	<0.04	10.2		+ +						+		+	
55	2190200	6335455	Spring	Wallace-spirilys	40	0.45	20	13.3	2.0	4	3.0	<0.02	<0.005	03	0.2	1.0	<0.04	10.2		+ +		101	0.116	0.021	0 12	85	0.0	18 7	21
30	2001020	0333435	Spring	VV3F4		I	L	L						1		I	I					421	0.110	0.021	0.13	0.0	0.9	10.7	2.1

5.4 References

- White, P.A., Cameron, S.G., Kilgour, G., Mroczek, E., Bignall, G., Daughney, C. and Reeves, R.R., 2004a. Review of groundwater in the Lake Rotorua catchment. GNS client report 2004/130.
- White, P.A., Reeves, R.R., Cameron, S.G., Daughney, C., Bignall, G. and Morgenstern, U., 2004b. Proposed field programme to define groundwater and nutrient inflow to Lake Rotorua discussion document. GNS confidential client report 2004/130a.
- Morgenstern, U., Reeves, R., Daughney, C., Cameron, S., and Gordon, D., In press. Groundwater Age and Chemistry, and Future Nutrient Load in the Lake Rotorua Area. GNS Science Report 2004/31.

6.0 GROUNDWATER CATCHMENT

6.1 Introduction

Environment Bay of Plenty commissioned the Institute of Geological and Nuclear Sciences to identify locations of groundwater discharge to surface water, areas where streams were gaining/losing water to groundwater, and measure rainfall recharge in the vicinity of Lake Rotorua. This work aims to contribute to the identification of all surface water discharges into Lake Rotorua.

Surface water flow and quality are regularly measured in the catchment (e.g. Rutherford, 2003) on major streams. However, these measurements do not capture the full effects of land use on nutrient loading to Lake Rotorua: about 69 km² of the catchment in the vicinity of the lake is ungauged and surface water does not flow regularly in about 48 km² of catchment. Streams are not the only pathway by which water may enter Lake Rotorua; (White et al., 2004) groundwater may discharge directly to the lake through the lake bed or to the lake via wetlands.

Published flow and nutrient measurements in the Lake Rotorua catchment, reviewed here, focus on the major streams. The work described in this chapter aims to:

- identify the locations of springs, small streams and seeps around the lake,
- measure or estimate flow in the lakeside spring and streams,
- identify areas of stream loss or gain due to groundwater, and
- report on the installation of a rainfall recharge site.

6.2 Review

Fish (1975) completed a nutrient inflow to Lake Rotorua based on inputs of nitrogen (in the ammonium and nitrate forms) and phosphorous in rainfall, eight streams and city sewage effluent:

- NH₃-N (called ammonium) inflow 254 kg/day,
- NO₃-N inflow 443 kg/day, and
- PO_4 -P inflow 186 kg/day.

Hoare (1987) monitored water quality in the nine major streams (and 16 tributaries) in the period 1975-1980 including flood flows and estimated nutrient loadings to Lake Rotorua of:

- ammonium-N 28.9 tonnes yr⁻¹,
- NO₃-N 193.2 tonnes yr^{-1} , and
- phosphate-P 27.9 tonnes yr⁻¹.

A water balance for Lake Rotorua (Hoare, 1980) for 1976 has:

•	streams ('major' sites plus 'minor' sites)	$13.7 \text{ m}^3 \text{ s}^{-1}$,
•	rainfall direct to lake	4.5 $\text{m}^3 \text{ s}^{-1}$, and
•	ungauged flow	$2.1 \text{ m}^3 \text{ s}^{-1}$.

The ungauged flow is that required to balance inputs and outputs. The ungauged catchment consists of about 69 km^2 of land around Lake Rotorua with no gauged surface water flow.

The Ministry of Works (Gordon pers. comm. 2004) collected information on miscellaneous Lake Rotorua catchment flows in 1973 (Kaituna River Catchment Water Resources Survey) and 1982 (Hamilton District Low-flow Water Resources Study). Both of these studies focused on the larger streams and rivers of the region.

Five Lake Rotorua wetlands were identified by Gibbs and Lusby (1996): (1) near the 3D maze; (2) Hannahs Bay; (3) Holdens Bay; (4) Hinemoa Point; and (5) Owhata Road. Measurements of water chemistry on the wetland and in groundwater aimed, over a two-year period, to determine the efficiency of wetlands for removing nitrogen. Surface drainage features are associated with the Hannah's Bay and Holden's Bay wetlands. Groundwater discharges off shore from the Owhata Road wetland (remnant) and enters the lake 'as a series of submerged springs quite close to shore' (Gibbs and Lusby, 1996). Other wetlands probably discharge groundwater through the beach into the lake.

During March 2004 lake margin wetlands at thirteen lakes in the Rotorua Lakes Ecological District were mapped via boat survey at a scale of 1:5000 on the 2003 Regional Digital Aerial

Mosaic (RDAM2003). Johanna Taylor, a scientist from Environment Bay of Plenty, developed the method with advice from Sarah Beadel, botanist/ecologist at Wildland Consultants. Field work was conducted by Craig Bishop, a botanist from Wildland Consultants, and Sarah Higham, a science assistant from Environment Bay of Plenty.

The survey assessed the extent and condition of lake margin wetlands within 500 metres of the lake edge. The thirteen lakes surveyed were: Rotorua, Rotoiti, Rotoma, Rotoehu, Okataina, Okareka, Okaro, Rerewhakaaitu, Rotomahana, Tarawera, Tikitapu, Rotokakahi and Rotokawau (Williams, pers. comm. 2005).

6.3 The field programme

Four elements to the field programme are:

- identification of the nature and location of water discharges into Lake Rotorua, including springs, seeps and drains,
- measurement of surface water flows into Lake Rotorua as a 'snapshot' of surface water discharge from the catchment in summer 2004,
- identification of where streams lose/gain water from/to groundwater, and
- measure the amount of water that seeps through the soil profile to groundwater.

6.3.1 Nature and location of water discharge

Lakeside springs, seeps and drains were identified in November and December 2004, primarily in consultation with:

- Vance Fulton, Environment Bay of Plenty
- Richard Mallinson, Environment Bay of Plenty
- Max Gibbs, National Institute of Water and Atmospheric Research (NIWA)

The work brief included:

• review of existing information on springs, seeps and wetlands. This survey did not repeat the wetland survey of Environment Bay of Plenty. The wetland features

identified in this work would probably not be classed as wetlands, in the Environment Bay of Plenty work, because the features are small and commonly support a small area of vegetation usually including willows, blackberry, etc;

- identification of surface water features from walking surveys of the lake edge where access is possible and collect the following information: locate features using GPS, photograph, and a note of any distinctive characteristics (e.g. geothermal springs);
- identification of surface water features from a boat survey where lake access is not possible;
- identification of any lake-bottom springs from discussions with lake users

6.3.1.1 Results

The survey identified 75 water features around the lake including springs, seeps and wetlands. A description of the sites (Appendix 6.1) includes location, text description and photographs for most of the sites. Included in these sites are:

- a spring (Site 73) not visited in the survey that was identified by Will Esler
- lakebed springs (Site 74) identified by boaties and by Gibbs (pers. comm. 2005)
- lakebed springs (Site 75) identified by Gibbs and Lusby (1996) offshore from Owhata Road

The survey records some features (e.g. Sites 1, 2, 3, 4, 5 and 6, Figure 6.1) that are not directly on the lake shore.

6.3.2 Measurement of water discharge

Environment Bay of Plenty hydrologists measured flows into Lake Rotorua on 7, 8 and 9 December 2004 and 2 February 2005 (Appendix 6.2). Sites in this survey include:

- major streams that are part of Environment Bay of Plenty's regular monthly lake-inflow monitoring (these are coded with 'RLNBR' in Appendix 6.2).
- features identified in the lake edge survey (Appendix 6.1)

features not identified in the lake edge survey (Appendix 6.1) capable of channelling water into the lake (e.g. culverts). Culverts are numbered with the Rotorua District Council asset number. Features in this class are identified with site numbers from 76 to 192 (Appendix 6.2). Most of the culverts record zero water discharge.

Flow measurements are made with one of three methods:

- 1) visual estimation (for low flows);
- 2) volumetric measurement and
- 3) flow meter (Ellery pers. comm., 2005)

6.3.3 Combined list of lake-side sites

The list of sites combined from Appendix 6.1 and Appendix 6.2 are plotted, in Figure 6.1, by type:

- spring (including lake bed springs)
- seeps
- stream
- pond
- culvert
- drain
- wetland

6.3.4 Surface water flow rates

Water flow is measured at a total of 185 sites (Figure 6.2). Flows were measured or estimated at 167 sites in December 2004 and at 17 sites in February 2005.

These sites included:

- 11 regular EBOP monitoring sites
- 173 lake side (i.e. lake edge and near lake edge) sites

Zero flow is observed at 86 of these sites. Flows between 0 and 5 L s⁻¹ are measured or estimated at 65 sites. Flows between 5.5 L s⁻¹ and 100 L s⁻¹ are measured or estimated at 15 sites and flows between 100 L s⁻¹ and 2543 L s⁻¹ are measured at 19 sites (Figure 6.3). The largest flow rate is measured at Hamurana Springs.

Figure 6.1 Location of near-shore and lake-shore features, Lake Rotorua.

Figure 6.2 Sites at which flows were measured (December 2004 and February 2005).

Figure 6.3 Measured flow December 2004 and February 2005.

6.3.5 Stream losses/gains to/from groundwater

EBOP conducted a number of stream gauging measurements on streams that flow into Lake Rotorua in the summer of 2004/05 to identify areas in streams that either gain water from groundwater, or areas that lose water to groundwater. These data were unavailable at the time of compiling this report.

6.3.6 Rotorua rainfall recharge lysimeter installation

6.3.6.1 Introduction

A soil lysimeter site was installed on farmland off Penny Road, Rotorua, for the purpose of estimating rainfall recharge to the underlying groundwater system. Installation of the site was commissioned by EBOP to provide groundwater recharge information for input into the groundwater flow model. The lysimeter site was installed at about map reference NZMG 2796900, 6349200 between 28 February and 4 March 2005. This site was selected for installation of the lysymeters as EBOP already have a telemetered rainfall measuring site (Mangorewa at Kaharoa Link) at this location (Figure 6.4). Installation of the site was overseen by Stewart Cameron (GNS) with assistance from Rob Reeves (GNS) and Greg Brosley (Landscape New Zealand, Rotorua).

The materials and method of installation were based on installation procedures for similar lysimeters developed by Lincoln Ventures (Cameron, 1992), and information provided by Hugh Thorpe (Canterbury University) and Brian Todd (Environment Canterbury).

6.3.6.2 Materials and methods

Two lysimeter casings were made by Lincoln Ventures. The casings were manufactured from 5 mm thick steel plate, rolled and welded to produce a cylinder 700 mm high by 500 mm in diameter. An internal cutting ring (5 mm thick by 50 mm high) was fitted to one end of the lysimeter cylinder. The edge of the lysimeter casing was bevelled at 45° angle.

The casings were driven into the ground with combination of weight from hydraulic digger and sledge hammer (Figures 6.5 and 6.6). The area around the casings was excavated as the casing was lowered to facilitate driving and decrease the risk of damaging the soil column (Figures 6.6 and 6.7). After the casing had been driven to a level approximately 5 cm below
the original ground surface, a cutting plate was inserted beneath the soil monolith (Figure 6.8). Long bolts with eyelets were fitted to lugs on the top of the casing to hold the cutting plate in place as the soil monolith was lifted out of the excavated pit (Figure 6.9). The cutting plate was then removed and the base of the monolith shaped with a spatula (Figure 6.10). A double layer of shade cloth was then laid on the base of the monolith and held in place by galvanised nails. A base plate with drainage hole was then bolted in place (Figure 6.11).

A 201 pail of Shell Petrolite (food grade petroleum jelly) was heated on a barbeque until free flowing and injected down the cavity between the soil monolith and the casing using a hand pump.

The pit was then excavated for installation of a box section to house rain-gauges (Figure 6.12). When the box section was in place, the pit was backfilled to the level of the bottom of the soil monolith (Figure 6.13). An alkathene pipe was fitted to the base of the monolith with Hansen fittings. The alkathene pipe will conduit water that has infiltrated through the soil column, from the base of the monolith to a tipping bucket raingauge located in the box section area. A PVC pipe and concrete blocks were placed beneath the monolith to house the alkathene pipe and provide a stable platform for the monolith to rest (Figure 6.14). A hole was drilled in the box section wall to pass the alkathene pipe from the base of the monolith to the rain-gauge. Backfilling of the excavated pit was then completed (Figure 6.15) and the grass sod reinstated (Figure 6.16). An electric fence was installed around the site to protect the grass from stock while the grass re-established, and to protect the stock from falling into the open box section hole while cover grating was constructed and rainfall gauges installed.

The tipping bucket raingauges are connected to EBOP's datalogger at the neighbouring climate station recording total 15 minute readings. This data can be extracted by EBOP via their telemetered radio system.

63

Figure 6.4 Kaharoa rainfall recharge site.

Figure 6.5 Recharge site prior to driving casings.

Figure 6.6 Initial placing of casing.

Figure 6.7Casing excavation.

Figure 6.8 Cutting plate.

Figure 6.9 Lifting the soil column.

Figure 6.10 Cutting plate removed.

Figure 6.11 Base preparation of the soil column.

Figure 6.12 Digging the box section.

Figure 6.13 Lysimeter installation.

Figure 6.14 Lysimeter outlet.

Figure 6.15 Backfilling the pit.

Figure 6.16 Completed lysimeter installation.

6.4 Summary

A total of 192 lake-edge, and near-lake-edge, surface hydrological are identified around Lake Rotorua. These features include: streams, springs, seeps, wetlands, drains, culverts and lakebed springs.

Surface flow rates are measured in 174 of these features (and 11 regular EBOP monitoring sites) during December 2004 and February 2005. Zero flow is observed at 85 of these sites; the maximum measured flow is 2543 L s^{-1} at Hamurana Springs.

EBOP have completed a stream flow survey of streams flowing into Lake Rotorua, but the results were not ready for inclusion in this report.

A rainfall recharge site measuring rainfall infiltrating through the soil profile has been installed at Kaharoa. This is recording total 15 minute recharge, and is connected to an EBOP telemetered rainfall station.

6.5 References

- Cameron, K.D., Smith, N.P., McLay, C.D.A., Fraser, P.M., McPherson, R.J., Harrison, D.F. and Harbottle, P., 1992. Lysimeters without edge flow: an improved design and sampling procedure. Published in Soil Sci. Soc. Am. J. 56: 1625-1628.
- Fish, G.R., 1975. A nutrient budget for Lake Rotorua. *In* Jolly, V.H. and Brown, J.M.A., eds. New Zealand Lakes. p150-157.
- Gibbs, M.M., and Lusby, F.E., 1996. Lake edge wetlands: their environmental significant to the Rotorua lakes NIWA consultancy report BPR005/2 to Environment Bay of Plenty. 45p.
- Hoare, R.A., 1980. Inflows to Lake Rotorua Journal of Hydrology (New Zealand) 19(1). 49-59.
- Hoare, R.A., 1987. Nitrogen and Phosphorus in the catchment of Lake Rotorua. Ministry of Works and Development Water Quality Centre Publication No. 11. 110p.
- Rutherford, K., 2003. Lake Rotorua nutrient load targets. NIWA Client Report Ham 2003-155. 59p.
- White, P.A., Cameron, S.G., Kilgour, G., Mroczek, E., Bignall, G., Daughney, C. and Reeves, R.R., 2004. Review of groundwater in the Lake Rotorua catchment. GNS Client Report 2004/130.

Appendix 1.1 Scope of work for the field programme (Note that the contract is not reproduced in full).

Introduction

The groundwater system of the Lake Rotorua catchment plays a crucial role in nutrient inflows to the lake. Nutrients associated with land use enter the groundwater systems through soil drainage and rainfall recharge. The nutrients reside in the groundwater system, probably for decades, but return to the surface through spring flows and direct recharge to the lake. An understanding of both the groundwater and surface water systems is required to plan remedial work to maintain and improve the lake's water quality.

This proposal is submitted in response to a request from Paul Dell and Dougall Gordon of Environment Bay of Plenty (EBOP), to collect groundwater/hydrological data in the Lake Rotorua catchment.

This proposal presents field work that will lead to improvements in our knowledge of groundwater quality, groundwater age, groundwater levels and groundwater catchments.

This proposal has been prepared with consideration of details supplied by Paul Dell and Dougall Gordon.

Background to project

This proposal is submitted in response to a request from Paul Dell and Dougall Gordon of EBOP. The work plan presented has been developed following discussions between EBOP, the Institute of Geological & Nuclear Sciences (GNS), and Rotorua District Council (RDC). The work programme is complementary to work by NIWA on the surface waters. It has been designed to fill the gaps in EBOP's current knowledge of the groundwater and nutrient loads in the Lake Rotorua catchment (White et al., 2004a)¹, and to provide adequate knowledge from which to formulate water quality protection measures. This project focuses on the collection of additional data only.

¹White, P.A., Reeves, R.R., Cameron, S.G., Daughney, C., Bignall, G., Morgenstern, U., 2004a. Proposed field programme to define groundwater and nutrient flow to Lake Rotorua. GNS client report 2004/130a.

The major aim of the project is to collect new data which will be used to better define groundwater sub catchments and provide data required for groundwater modelling. EBOP has indicated to GNS that groundwater catchments S1, E1, E2, E3, N1, N2, N3, W3 and W4 in White et al.(2004b)² are of priority.

Project design

We propose that the project be structured into eight categories.

- Groundwater drilling GNS will provide geological advice and piezometer construction advice for approximately five groundwater exploration bores in the Lake Rotorua catchment. The number of holes may vary depending on the drilling conditions and objectives for each hole.
- Pump tests GNS will organise drillers and analyse data for up to four pump tests in bores in the Lake Rotorua catchment. The number of tests may vary depending on budget constraints. It is expected some of the new drill holes (above) will be pump tested.
- 3. Groundwater quality Groundwater will be sampled at up to 30 spring/well sites and analysed for major anions, cations and nutrients.
- 4. Groundwater age dating Groundwater will be sampled for tritium, CFCs and SF_6 for up to 20 sites. Age interpretations for each sample will be calculated. Sites will be a combination of springs, bores and possibly streams. Full isotope analyses may not be required for all samples.
- 5. Groundwater levels + surveying Groundwater levels will be measured (where possible) in the study area. Sites where groundwater levels are measured will be surveyed with GPS to define location and elevation for the regional piezometric map.
- 6. Groundwater catchments GNS will install a rainfall recharge site; identify locations of groundwater discharge to streams and stream discharge to groundwater from historical records, perform walking surveys and gauging measurements; map small streams, wetlands, lake seeps, using available information and walking surveys; and assess lake-bottom springs from available information.

² White, P.A., Cameron, S.G., Kilgour, G., Mroczek, E., Bignall, G., Daughney, C. and Reeves, R.R., 2004b. Review of groundwater in the Lake Rotorua catchment. GNS client report 2004/130.

 Project management and report – GNS will manage the project, collate data and report basic data (without interpretations) in a GNS client report.

Drilling costs are difficult to precisely estimate given the many 'unknowns' that can affect the amount of time taken to drill and depths required to achieve the target depth. GNS will communicate drilling progress to EBOP on a regular basis to ensure issues are dealt with rapidly. Drilling issues will be resolved with EBOP's collaboration.

This programme assumes that a satisfactory number of suitable groundwater monitor bores for the pump test can be found. It is essential that the survey of existing bores be completed prior to a decision being taken to site new bores.

The project will run from October 2004 to June 2005.

Timetable

We propose a start date of 1 October 2004. Deliverable dates will shift accordingly should there be any delays.

Field programme component	Proposed timetable
Bore Locations	Immediate, Oct 2004
Drilling	Oct 2004 - Feb 2005
Pump tests	Oct 2004 - Feb 2005
Groundwater quality	Sampling: Nov 2004 to March 2005
Water dating	Sampling: Nov 2004 to Feb 2005
Water levels + surveying	Oct 2004 to Dec 2004
Groundwater catchment	
	Groundwater recharge monitoring site: Dec 2004 to Feb 2005
	Groundwater-stream interaction: Oct 2004 to Dec 2004
	Locations of groundwater discharge in, and near, the lake: Oct
	2004 to Dec 2004
Project management	Ongoing
Data management	Data entry: to June 2005
Report	Draft report in June 2005

Contributions by Environment Bay of Plenty

• EBOP will initiate a 'bore locating' programme to identify bores not in the EBOP database that are in the study area. Data collected from this programme will be supplied to GNS no later than October 28, 2004.

- EBOP will locate bores suitable for monitoring the groundwater during pump tests.
- EBOP will assist GNS with site selection for new drill holes
- EBOP will assist GNS with resource consents required for the new drill holes
- EBOP will obtain written landowners permission for new drill holes
- EBOP will supply (where possible) groundwater bore details as requested.
- EBOP will assist GNS with groundwater quality site selection and sampling. EBOP will arrange access to private properties/bores that need to be sampled.
- EBOP will assist GNS with groundwater age dating site selection and sampling. EBOP will arrange access to private property/bores that need to be sampled.
- EBOP will collect data and maintain the rainfall recharge site once GNS has commissioned the site.
- EBOP will supply GNS with historic stream flow information (e.g.: DSIR 1980s work) by December 17, 2004.
- EBOP will perform walking surveys of the main streams flowing into Lake Rotorua and assess where they think streams are losing or gaining water to groundwater. EBOP will supply GNS a GIS map showing locations of stream gain/loss by December 17, 2004.
- EBOP will stream gauge (at least once) all major streams flowing into Lake Rotorua. Stream gauging sites will be selected by GNS and EBOP and be based on the EBOP walking survey of the main streams. EBOP will supply GNS the stream gauge data by December 17, 2004.
- EBOP may be requested to gauge streams flowing into Lake Rotorua identified by the lake walking survey.
- EBOP will supply GNS with a GIS land use map of the Lake Rotorua catchment.
- GNS will assist EBOP prepare the bid documents for the drilling/pump test tenders. The drilling /pump test contract will be between the drillers and EBOP. EBOP will be responsible for paying the drillers directly.

Deliverables

GNS will provide EBOP with two letters updating the progress of the project by 1 December, 2004 and 1 March, 2005.

GNS will provide to EBOP a draft report summarizing drilling conditions, water levels, pump test data, interpretations of the pump test data, summary of all chemical results, age dating results, survey data, maps of stream gain/loss to groundwater and a map of lake gain/loss to groundwater in June 2005. No interpretation of the data will be made. Interpretation of the data is expected to take place in later phases of the project.

EBOP will supply GNS with any comments on the draft report within two weeks of its receipt. The final report will be completed by GNS within two weeks of receiving the EBOP comments.

Appendix 3. Pump test data supplied to GNS for the Mamaku township bores.

Pump test carried out by Rotorua District Council:

Attachments tt 2-. B1 43 083 **Constant Discharge Test** Pumping 113 m deep Well Owner: Kotarua District Council. Please circle bore type & duration of test Private Bag 203029 Address: (Pumping bore) Monitoring bore Potonia 12 hour 24 hour 8 hour Environment B-O-P Well No. 2102 Measured by: Chris Campbell CRDC ZDC Bore 3 (2102) Site ID Distance from pumping well: 0 Date: m 21-5-2 Pumping rate: gph 3:5 > 3:2, 1/s Time: 8.30am - From Clamp ontop of Measuring point details: bore . Approx G.L * Rimping rate varied, as well dropped the pump cauld not pump at 2-5 lisec. By 3hrs pumping rate had dropped to 2:2//sec. If then remained Also 2DC4 existing prediction fore Date Time Level constant numing constant of 4:02/sec until 13-2-2 1:00pm 55:49 constant end of readings recovery 20-9-2 2:35pm 55.79 test. 7.55 am 21-9-2 57.09 Actual Elapsed Level Comments time minutes metres 58.1 8.30am 0 30 second readings 61.09 0.5 65.21 1.0 71.32 1.5 74.02 2.0 75:49 2.5 76.82 3.0 77:29 3.5 77.41 4.0 77.51 4.5 5.0 77.56 77.56 5.5 77:59 6.0 6.5 77.61 77.68 7.0 77.71 7.5 77.80 8.0 77.46 8.5 79.34 9.0 81.10 9.5 8:40 am BIGI 1 minute readings 10.0 82.19 11.0 12.0 Sensor reading not working 13.0 82.80

page 2

EBOP Driller's Log Form No. 21-9-2 Date:

EDC3 (2102) Well No .: Time:

B.30an Start.

time minutes metres 14.0 63.01 15.0 83.40 16.0 63.53 17.0 83.81 18.0 63.53 19.0 84.10 8.50 20.0 22.0 64.12 28.0 64.64 28.0 64.75 35.0 85.40 35.0 85.40 40.0 85.40 45.0 85.40 45.0 85.40 45.0 85.40 45.0 85.40 45.0 85.40 45.0 85.40 45.0 85.40 55.0 86.40 90.0 87.75 80.0 87.70 80.0 87.75 80.0 87.75 10.0 87.75 12.0 87.75 140.0 88.21 140.0 88.21 11.1 11.1 11.20	Actual	Elapsed	Reading	Comments
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	time	minutes	metres	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14.0	B3.01	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	15.0	83.40	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		16.0	8359	
18.0 $B_3 \cdot S_5$ 19.0 $B_4 \cdot 10$ $B \cdot SO$ 20.0 $B_4 \cdot 22$ $2 \text{ minute readings}$ 22.0 $B_4 \cdot 44$ 24.0 $B_4 \cdot 64$ 28.0 $B_4 \cdot 83$ 5.0 30.0 $B_5 \cdot 04$ 5.0 $B_4 \cdot 83$ 40.0 $B_5 \cdot 64$ 40.0 $B_5 \cdot 66$ 40.0 $B_5 \cdot 66$ 50.0 $B_5 \cdot 48$ 50.0 $B_5 \cdot 66$ 50.0 $B_5 \cdot 66$ 50.0 $B_5 \cdot 66$ 50.0 $B_5 \cdot 66$ 60.0 $B_6 \cdot 53$ 70.0 $B_6 \cdot 60$ 90.0 $B_7 \cdot 61$ 90.0 $B_7 \cdot 51$ 90.0 $B_7 \cdot 51$ 120.0 $B_7 \cdot 51$ 140.0 $B_7 \cdot 23$ 20 $B_7 \cdot 51$ 120.0 $B_8 \cdot 37$ <		17.0	83.B1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		18.0	83:55	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		19.0	84.10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.50	20.0	84.22	2 minute readings
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		22.0	84.49	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		24.0	84 . 64	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		26.0	84075	3.5 lisec pumping rate.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		28.0	84.88	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.00	30.0	85.04	5 minute readings
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		35.0	85148	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		40.0	85.68	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		45.0	85.86	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		50.0	86.18	
g.30 60.0 96.53 100 100 100 100 100 100 100 100 100 100.0 <td></td> <td>55.0</td> <td>86:50</td> <td></td>		55.0	86:50	
70.0 86.60 40 watch restart $0.005ec$ 80.0 87.01 $5ercor$ plann up 90.0 87.03 $Breat 4020$ (24.0 elsec 100.0 87.08 20 minute readings 120.0 87.08 20 minute readings 120.0 87.08 20 minute readings 120.0 87.01 100.0 120.0 87.01 100.0 120.0 87.01 11.07 140.0 88.21 11.07 140.0 88.21 11.07 11.30 180.0 88.21 11.07 12.30 210.0 88.90 11.07 11.07 12.30 210.0 88.90 11.07 11.07 13.20 270.0 80.85 $31.2.07$ 11.07 13.30 300.0 90.85 $31.2.07$ 11.07 14.20 360.0 80.85 $31.2.07$ 11.07 14.30 480.0 91.28 $3.2.07$ 11.07 17.30 540.0	9.30	60.0	86.53	10minute readings
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	70.0	86.60	Stop watch restart 0.005ec.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		80.0	87.01	Sensor playing up
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		90.0	87:05	Bore 4 Rex @ 4.0elsec
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.00 mm	100.0	87.08	20 minute readings
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ů	120.0	87.31	
160.0 88.31 11 11 11 11 11.30 180.0 88.76 $30 minute readings$ $3.2 l/sec$ $400 logged$ 12.00 210.0 88.90 11		140.0	88.22	3.3 elsec Jumping Fate
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		160.0	88.31	11 12 1,
12.00 210.0 88.90 11 <	11:30	180.0	88.76	30 minuté readings 3,2 l/sec Rumpinitate
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.00	210.0	88190	13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.30 m	240.0	83.41	11 11 11 11
13:30 300.0 $90:27$ $60 minute readings$ $14:30$ 360.0 $90:85$ $3:2$ ii ii $15:30$ 420.0 $91:08$ $3:2$ ii ii ii $15:30$ 420.0 $91:08$ $3:2$ ii ii ii $15:30$ 480.0 $91:28$ $3:2$ ii ii ii $17:30$ 540.0 $91:75$ $3:2$ ii ii ii $17:30$ 540.0 $91:75$ $3:2$ ii' ii' ii' $1:30p$ 900.0 $92:00$ 5 hour readings $3:2$ ii' ii' $11:30p$ 900.0 $93:45$ $3:2$ ii' ii' ii' $4:30a$ 1200.0 $3:58$ $3:2$ ii' ii' ii'	13:00	270.0	80.08	
14:32 360.0 $80:85$ $3:2$ n n $15:32$ 420.0 $91:08$ $3:2$ 11 11 11 $15:32$ 420.0 $91:08$ $3:2$ 11 11 11 $16:32$ 480.0 $91:28$ $3:2$ $1.$ 11 $1.$ $17:32$ 540.0 $91:75$ $3:2$ $1.$ $1.$ $1.$ $17:32$ 540.0 $91:75$ $3:2$ $1.$ $1.$ $1.$ $17:32$ 600.0 $92:02$ 5 hour readings $3:2$ $1.$ $1.$ $11:320$ 900.0 $93:45$ $3:2$ $1.$ $1.$ $1.$ $11:320$ 900.0 $93:45$ $3:2$ $1.$ $1.$ $1.$ $12:20.0$ $3:58$ $3:2$ $1.$ $1.$ $1.$ $1.$	13:30	300.0	90.27	60 minute readings
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14:30	360.0	90.85	3:2 11 11 11
16.30 480.0 91.28 3.2 1.7 1.7 17.30 540.0 91.75 3.2 1.7 1.7 17.30 540.0 91.75 3.2 1.7 1.7 1.30 600.0 92.00 5 hour readings 3.2 1.7 1.7 $11.30p$ 900.0 93.145 3.2 1.7 1.7 $11.30p$ 900.0 93.145 3.2 1.7 1.7 $11.30p$ 900.0 83.58 3.2 1.7 1.7 1200.0 83.58 3.2 1.7 1.7 1.7 1500.0 53.148 3.2 1.7 1.7 1.7	15:30	420.0	91.08	312 11 11 11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.30	480.0	91·2B	3:2 1, 11 11
$L:30$ 600.0 $g_{2'}co$ 5 hour readings $3!2$ i' i' i' $11:30p$ 900.0 $63:45$ $3:2$ i' <td< td=""><td>17:30</td><td>540.0</td><td>31.75</td><td>3.2 11 11 11</td></td<>	17:30	540.0	31.75	3.2 11 11 11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.20	600.0	92:00	5 hour readings 3:2 i' i' ''
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.3000	900.0	93:45	3.2 " " "
(3.2) and 1500 0 33148 3.2 11 11 11	1122000	1200.0	33.5B	3.2 11 11 11
	12. 20 au	1500.0	93148	3.2 11 11 11

ENVIRONMENT B-0-0-	Constant Discharge Test Recovery				
Well Owner: Address:	Private Private	Pistricí (Bag Rozoi tarka	Please circle bore type & duration of test 29 Pumping bore 8 hour 12 hour		
EBOP Driller's Lo	g Form No.	2102			
Measured by:	Chris Ce	impbell CRI	DC) Well No .: EDC Porez (2102)		
Distance from put	mping well:	0	m Date: <u>22-9-2</u>		
Measuring point of # Note PD	letails: fo C #4 proc ed to ev	on top of luction to nd of re	clamp Fail. Time: G. 30am. ore running @ 410-45ec from start of covery test.		
Actual	Elapsed	Reading	Comments		
time	minutes	metres			
320am	0	32.46	30 second readings		
	0.5	83.01			
	1.0	85:50			
	1.5	01,46			
	2.0	79.18			
	2.5	77.78			
	3.0	77:68			
	3.5	77:52			
	4.0	77.49			
	4.5	77.40			
	5.0	76:23			
	5.5	74:36			
	6.0	73.18			
	6.5	71.90			
	7.0	70.91			
	7.5	70.23			
	8.0	69:59			
	8.5	68.82			
	9.0	68.41			
	9.5	68.02			
340 am	10.0	67.68	1 minute readings		
	11.0	67.05			
	12.0	66.71			
	13.0	66.43			
	14.0	66.10			
	15.0	65.89			
-	16.0	65'68			
	17.0	65.47			
	18.0	65:30			
	19.0	65,15			

	Recovery	page 2		
EBOP Driller's Log Form No	. 2102	Well No.:	RDC 3	(202)
Date: 22-9-2		Time:	930a-	start

Actual	Elapsed	Reading	Comments
time	minutes	metres	
9.50am	20.0	64.98	5 minute readings
	22.0	64:35	
	24.0	64.82	
	26.0	64.65	
	28.0	64.53	
10.00am	30.0	64.41	5 minute readings
	35.0	64.17	
	40.0	63:95	
	45.0	63.72	
	50.0	63.61	
	55.0	63:47	
10.30 m	60.0	63:35	10 minute readings
	70.0	63.24	
	80.0	63.11	
	90.0	62:03	
	100.0	62.20	20 minute readings
	120.0	62.50	
	140.0	62.27	
	160.0	62.03	
12.300-	180.0	61.85	30 minute readings
1	210.0	61.61	
	240.0	61.45	
	270.0	61,28	
2.30 am.	300.0	61.10	60 minute readings
1	360.0	60.88	
	420.0	60.68	
	480.0	60.52	
	540.0	6038	
7:300~	600.0	60.26	5 hour readings
12:30a-	900.0	59.82	
5:300	1200.0	59:55	
10:200-	1500.0	55.32	
-			

87	OS	0800

			01000
ENVIRONMENT BOOD		Con	nstant Discharge Test
ENVIRONMENT BOT	·		D :
Same -			Pumping
Bay of Menty Regional Council			to m deep
Well Owner:	_ Roton	a District (Council . Please circle bore type & duration of test
Address:	Private i	Bag R030	Pumping bore Observation bore
		otorua	8 hour 12 hour 24 hour
Environment B-C	D-P Well No. 2	DC Bore 2	(Pag
Measured by:	Brendon	Kidd (PD	DC) Site ID EDC Bore 2
Distance from pu	umping well:	88	m Date: <u>21 - 09 - 02</u> .
Pumping rate:		gph	//s
Measuring point	details:	From top od	f manhole rim above bore. Appox G.L.
* Note: U	k had also	2 had produ	uction tore (2DC4) running continously
6 4.04	ersec u	ntil end c	of recovery period, 2002 to 2004 20mapar
	Backar	ound	Date Time Level
1	readi	nge	20-9-2 2.50pm 46.09
	reau	ngs	21-3-2 1:50am 46.09
Actual	Flansed	Level	Community
time	minutes	metres	comments
8.30 am	0	46.46	PUMP ON
	0.5	H6. H65	30 second readings
	1.0	46.465	
	1.5	46.465	
	2.0	46.465	
	2.5	46.465	
	3.0	46.465	
	3.5	46.465	
	4.0	46.465	
	4.5	46.465	
	5.0	46.465	
	5.5	46.465	
	6.0	46.465	
	6.5	46.465	
	7.0	46.465	
	7.5	46.465	
	8.0	46.465	-
	8.5	46.465	
	9.0	46.465	
	9.5	460465	
B.40am	10.0	46.465	1 minute readings
	11.0	46.465	
	12.0	46.465	
	13.0	46.465	

Date:

Pumping

EBOP Driller's Log Form No. 21/09/2. page 2

Well No .:

Well Owner:

Rotoma District Council.

RDC 2.

Actual	Elapsed	Reading	Comments
time	minutes	metres	
	14.0	46:465	
	15.0	46.465	
	16.0	46.465	
	17.0	46.465	
	18.0	46.465	
	19.0	. 46.465	
	20.0	46.465	2 minute readings
	22.0	46.465	
	24.0	46.465	
	26.0	46.465	
	28.0	46.465	
3.00am.	30.0	46.465	5 minute readings
	35.0	46.465	
	40.0	46.465	
	45.0	46.465	
- *- ·	50.0	46.465	
	55.0	46.465	
5.30 am	60.0	46.463	10 minute readings
	70.0	46.465	
	80.0	46.465	
	90.0	46.465	
	100.0	46.465	20 minute readings
1 - Seam	120.0	46.465	
	140.0	46.465	-
	160.0	46.465	
11.30 ami	180.0	46.465	30 minute readings
	210.0	46.46	
	240.0	46.45	
	270.0	46.45	
	300.0	46.45	60 minute readings
	360.0	46.45	
	420.0	46.45	
	480.0	46.45	
	540.0	46,45	
6:30pm	600.0	41.45	5 hour readings
	900.0	46.45	
	1200.0	46.45	
(2.20)	4500.0	01 10	Parti II de l'and

ENVIRONMENT BOP	Constant Discharge Test Recovery				
Well Owner: R Address: R	Jona Detrict Council Jock Bag R03029 Potorua	<u>Pleas</u> Pui 8 I	e circle bore type & duration of test mping bore Observation bore hour 12 hour 24 hour		
EBOP Driller's Log Form Measured by: Brew Distance from pumping w	No. RDC#2(See Altoched Mon Kidd (RDC) Plan)	Well No.:	2DC#2_		
Measuring point details:	From MH lid Rim E	M2	24 J-2		

Actual time	Elapsed	Reading metres	Comments
\$20am	0	46.48	PUMP OFF
	0.5	46.48	30 second readings
	1.0	46.48	
	1.5	46.48	
	2.0	46.48	
	2.5	46.48	
	3.0	46.48	
	3.5	46.48	
	4.0	46.48	
	4.5	46.48	
	5.0	46.48	
	5.5	46.48	
	6.0	46.48	
	6.5	46.48	
_	7.0	46.48	
	7.5	46.48	
	8.0	46-48	
	8.5	46.48	
	9.0	46.48	
	9.5	46.48	
	10.0	46.48	1 minute readings
25	11.0	46.48	
	12.0	46.4B	
	13.0	46.48	
	14.0	46.48	· ·
	15.0	46,42	
	16.0	46.48	
	17.0	46.48	
	18.0	46.48	
	19.0	46.48	

Recove	ery
--------	-----

page 2

EBOP Driller's Log Form No._____ Date: 22-3-2 Well No.:

Well No.: Well Owner:

EDC#2 Felcula Detrict Caencil

Actual	Elapsed	Reading -	Comments
time	minutes	metres	
3,50am	20.0	46.48	2 minute readings
	22.0	46.48	
	24.0	46.48	
	26.0	46.48	
	28.0	46.48	
10.00am.	30.0	46.48	5 minute readings
	35.0	46,48	
	40.0	46.48	
1	45.0	46.48	
	50.0	46.48	
	55.0	46.48	
1030au	60.0	46.48	10 minute readings
	70.0	46.48	
	80.0	46.48	
	90.0	46.48	
	100.0	46.48	20 minute readings
	120.0	46.48	
	140.0	46.48	
	160.0	46.48	
12:30pm,	180.0	46.48	30 minute readings
	210.0	46.48	
	240.0	46 48	
	270.0	46.48	
2:30 pm	300.0	46.48	60 minute readings
	360.0	46.48	
	420.0	46.48	
	480.0	46.49	
	540.0	46.49	
7:30 pm	600.0	46.49	5 hour readings
12:30am	900.0	46.50	
5.30am	1200.0	46.50	
10.20am	1500.0	46.49	

ENVIRONMENT B-0-P		Con	stant F	Discha Pumping	rge Tes	91 m deep
/ell Owner: _ (ddress:	Namaku S POBox Ngjor	avomilling (346 ngotaha.	io Ltd	Pleas Pu 8	e circle bore type & mping bore	Anitoring bore
nvironment B-O-F easured by: istance from pum umping rate: easuring point de	tails:	Approx 271 gph	DC) Ms COGGEN	Site ID Date: Time:	Mamaku Sa 21 - 9 - 2 830an	alomill. (43
				Dete	Time	Lavel
	Backgr	ound		20-9-2	24000	Lilano
	readir	nas		21-9-2	7:58000	11/10
		.90			- SCAWI	4610
Actual	Flanced	Loval	1		ammanta	
time	minutes	metres		C	omments	
830am	0	46.10	30 secon	d readings		
	0.5	46.08				
	1.0	46.08				
	1.5	46.08				
	2.0	46.08				
	2.5	46.08				
	3.0	46.08				
	3.5	46.08				
	4.0	46.08				
	4.5	46.08				
	5.0	46.08		_		
	5.5	46.08				
	6.0	46.08				10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
	6.5	46.08				
	7.0	46.08				
	7.5	46.08				
	8.0	46.08				
	8.5	46.08				
	9.0	46.29	Mam	ite Mill De	WD ON	
	9.5	111-09	- Control	- the po		
BUDOW	10.0	46.00	1 minute	readinas	e e o kanala a ana desam	
0 -10 -4400	11.0	46:08				
	12.0	116:07	1			

ENVIRONMENT BOP			Pumping	page 2	
Same	EBOP D	riller's Log Form I	No.	Well No.:	4386
Bay of Plenty Regional Council	Date:	21-9-	-2.	Well Owner:	Mamaku Savonillir
Actual	Elapsed	Reading		Comments	<u> </u>
time	minutes -	metres			
	14.0	46.08			
	15.0	46.09			
	16.0	46.08			
	17.0	46.08			
	18.0	46.08			
	19.0	46.08			
8:50am	20.0	46.10	2 minute readings		
	22.0	46.08			
	24.0	46.07		#1	
	26.0	46.08			
	28.0	46.08			
300an	30.0	46.27	5 minute readings N	lamaku Mil	N Runzan
	35.0	46.08			, and the second
	40.0	46.07			
	45.0	46.07			
	50.0	46.08			
	55.0	46.08			
330an	60.0	46.08	10 minute readings		
	70.0	46.09			
	80.0	46.08			
	90.0	46.08			
10.10 an	100.0	46.08	20 minute readings		
	120.0	46.08			
	140.0	46.08			
	160.0	46.08			
11.30 am	180.0	46.08	30 minute readings		
	210.0	46.30	hildast for forki	A wed - M	lowaky Mill Rumon
	240.0	46.08			
	270.0	46.29			
1:30pm	300.0	46.08	60 minute readings		
	360.0	46.08	Presure-tank 3	GOKPG TUM	12 Off
	420.0	46.08	1' '' 3	BO KPa "	1.
	480.0	46.08	11 11 (120 KPa	
	540.0	46.08	11 11	400 rPall	()
5.30pm	600.0	46.08	5 hour readings	380 KPa	
1.30 p.~	900.0	46.0B	11 11	360 KPa	
1:30an	1200.0	4630 /	Pressure tank on-	then suttch	red offlesel
5-30am	1500.0	46.08	then returned	\$ 10 116.08	3

ENVIRONMENT 6019	Discharge Test
By al Perty Regiond Courd	covery
Well Owner: Mamaku Sawmilling Co Ltd Address: PO Box 346 Ngengotaha EBOP Driller's Log Form No. 4386	Please circle bore type & duration of test Pumping bore Observation bore> 8 hour 12 hour 24 hour>
Measured by: <u>Luke Diment CPDC</u>	Well No.: <u>Mamaku Salomill (43</u> 86)
Distance from pumping well: <u>m</u>	Date: <u>12-3-2</u>
Measuring point details: <u>From</u> top of co	Iseing

Actual	Elapsed minutes	Reading metres	Comments
330am	0	46.08	PUMP OFF
	0.5		30 second readings
	1.0		
	1.5		
	2.0		
	2.5		
	3.0		
	3.5		
	4.0		
	4.5		
	5.0		
	5.5		
	6.0		
energy in the second in the	6.5		
	7.0		
	7.5		
	8.0		
	8.5		
	9.0		
	9.5		
	10.0		1 minute readings
	11.0		
	12.0		
	13.0		
	14.0		
	15.0		
	16.0		
	17.0		
	18.0		
	19.0		

EBOP Driller's Log Form No._____ Date: <u>22-9-2-</u>

ery page 2

Well No.: Mamaku Samilly See Ltd.

Actual	Elapsed	Reading	Comments
time	minutes	metres	
9:5an	20.0		2 minute readings
	22.0		
	24.0		
	26.0		
	28.0		
	30.0		5 minute readings
	35.0		
	40.0		
	45.0		
	50.0		
	55.0		
	60.0		10 minute readings
	70.0		
	80.0		
	90.0		
11:10am	100.0	46.08	20 minute readings
	120.0		
	140.0		
	160.0		
	180.0		30 minute readings
	210.0		
	240.0		
	270.0		
2:30pm	300.0	46.08	60 minute readings
	360.0		
4.30pm	420.0	46.10	
5.30pm	480.0	16.10	
6.30pm	540.0	46.11	
7.300~	600.0	46.11	5 hour readings
12:30an	900.0	46.11	
5.30a~	1200.0	46.11	
	1500.0		No reading as Mill working
			Jazzana tota tu op
	4		

Existing (Production Borel) RDC Bore 4. Mamaku. Taonship.

© Institute of Geological & Nuclear Sciences Ltd

Appendix 4.1 New bores found and the survey results.

		0.10.0	E t t		Date of	-		Method of obtaining	Est XY	Elevation	Method of	Est elevation	Dans Danstle (m)			Bore diameter		Screened	Screened
Found	GNS	10001	bore	Rotoiti	19/11/2004	2810136.1	6341009.7	RTK-GPS	0.3	(m) 415.9	RTK-GPS	0.5	53.3	47.925	top of steel casing	(mm) 100	steel	from	to
Found	GNS	10002	spring	Rotoiti	19/11/2004	2805780.3	6343355.1	RTK-GPS	5	369.4	RTK-GPS	5	55.5	0	top of steel casing	100	31001		
Found	GNS	10003	bore	Rotoiti	24/11/2004	2803368.9	6343170.0	RTK-GPS	0.3	326.9	RTK-GPS	0.5				100			1
Found	GNS	10004	bore	Rotoiti	24/11/2004	2803692.6	6342407.6	RTK-GPS	0.3	307.2	RTK-GPS	0.5	approx. 30m - not measured.	approx. 13m - not measured.	Not measured	100	steel		
Found	GNS	10005	bore	Rotoiti	24/11/2004	2804295.2	6347870.5	RTK-GPS	0.3	279.7	RTK-GPS	0.5	9.233	2.21	top of steel casing	100	steel		
Found	GNS	10006	bore	Rotorua (south)	25/11/2004	2786978.9	6315089.0	RTK-GPS	0.3	395.0	RTK-GPS	0.5	80 It - not measured. Converted = 24.4m	30 ft - not measured. Converted = 9.14m	not measured	110	steel		+
Found	GNS	10008	bore	Rotorua (south)	25/11/2004	2789747.7	6320739.8	RTK-GPS	0.3	389.1	RTK-GPS	0.5	Apparently very deep.			110	steel		1
Found	GNS	10009	bore	Rotorua (south)	25/11/2004	2793061.1	6318028.1	RTK-GPS	0.3	303.8	RTK-GPS	0.5				170	steel		1
Found	GNS	10010	bore	Rotorua (south)	29/11/2004	2795069.4	6322524.7	RTK-GPS	0.3	425.8	RTK-GPS	0.5				120	steel		
Found	GNS	10011	bore	Rotorua (south)	29/11/2004	2796402.0	6322888.1	RTK-GPS	0.3	439.5	RTK-GPS	0.5				~120	silver and thin?		
Found	GNS	10012	bore	Rotorua (south)	29/11/2004	2798832.6	6353313.8	RTK-GPS	0.3	420.8	RTK-GPS	0.5				~180	silver and thin?		
Found	GNS	10013	bore	Rotoiti	1/12/2004	2803906.9	6349963.3	RTK-GPS	0.3	239.4	RTK-GPS	0.5	Owner said 8 - 13 rods. Not measured		Not measured	~100	too grimy to see		
Found	GNS	10015	bore	Rotorua (south)	13/12/2004	2800988.3	6323383.2	RTK-GPS	0.3	433.3	RTK-GPS	0.5	11.59	1.97	top of steel casing	240	steel		
Found	GNS	10016	bore	Rotoiti	14/12/2004	2809111.5	6349703.8	RTK-GPS	0.3	337.7	RTK-GPS	0.3				~100	too grimy to see		
Found	GNS	10017	bore	Rotoiti	14/12/2004	2811081.8	6349767.6	RTK-GPS	0.3	274.1	RTK-GPS	0.3	10 x 22ft rods according to owner		Not measured	~100	too grimy to see		
Found	GNS	10018	bore	Rotoiti	14/12/2004	2812924.3	6355575.8	RTK-GPS	0.3	196.4	RTK-GPS	0.3				~140	steel		
Found	GNS	10019	bore	Rotoiti	14/12/2004	2813323.2	6354835.9	RTK-GPS	0.3	233.5	RTK-GPS	0.3				~130	steel		-
Found	GNS	10020	bore	Rotoiti	14/12/2004	2814162.6	6354604.1	RTK-GPS	0.3	195.1	RTK-GPS	0.3				100 - 130	steel		-
Found	GNS	10022	bore	Rotoiti	15/12/2004	2812068.8	6349873.9	RTK-GPS	1	326.4	RTK-GPS	0.3	apparently 15 rods?			~100	too grimy to see		
Found	GNS	10023	bore	Rotoiti	15/12/2004	2813881.1	6348045.5	RTK-GPS	0.3	374.8	RTK-GPS	0.3					steel		
Found	GNS	10024	bore	Rotoiti	17/12/2004	2811430.4	6352033.8	RTK-GPS	0.3	226.2	RTK-GPS	0.3				~120	steel		
Found	GNS	10025	spring	Rotoiti	17/12/2004	2811904.3	6353153.2	RTK-GPS	5	2/3.1	RTK-GPS	3	100m owner stated	0	Not monourod				-
Found	GNS	10020	spring	Rotoiti	5/01/2005	2807014.2	6349590.7	RTK-GPS	10	293.1	RTK-GPS	2	Toom owner stated	0	Not measured				
Found	GNS	10028	spring	Rotoiti	5/01/2005	2803524.1	6349025.1	RTK-GPS	0.3	274.4	RTK-GPS	0.3		0					
Found	GNS	10029	bore	Rotoiti	10/01/2005	2812361.6	6350671.2	RTK-GPS	1	305.7	RTK-GPS	0.3				~80	steel		I
Found	GNS	10030	bore	Rotoiti	12/01/2005	2810856.7	6349217.7	RTK-GPS	0.3	294.0	RTK-GPS	0.3				100	steel		
Found	GNS	10031	spring	Rotoiti	12/01/2005	2814730.6	6350066.4	RTK-GPS	20	246.9	RTK-GPS	5		0					+
Found	GNS	10032	bore	Rotorua (south)	14/01/2005	27012227	6327949 4	RIK-GPS	0.3	323.0	RTK-GPS	0.3	}	1	ł	- 100	1	I	+
Found	GNS	10033	bore	Rotorua (south)	18/01/2005	2794645.4	6351413.0	RTK-GPS	0.3	390.2	RTK-GPS	0.3	75.21	no water found	top of steel casing	~100	steel	1	1
Found	EBOP	10084	bore	Rotorua	26/10/2004	2788649.4	6352785.1	RTK-GPS	0.3	497.0	RTK-GPS	0.3	31.77	no water found	,	75	steel		
Found	EBOP	10092	bore	Rotorua	27/10/2004	2795576.4	6349310.4	RTK-GPS	0.3	479.3	RTK-GPS	0.3	approx 225	172.37	top of steel casing	150	steel		
Found	GNS	10037	spring	Rotorua (south)	5/01/2005	2805849	6348299	GPS	20	306	EST-MAP	20		0					+
Found	GNS	10038	spring	Rotorua (south)	5/01/2005	2806139	6347660	GPS	20	295	EST-MAP	20	apparently 50 ft not manual	0	Not magazine d	70	ataal		+
Found	GNS	10039	spring	Rotorua (south)	5/01/2005	2806045	634726F	GPS	20	200	EST-MAD	20	apparentity 50 it, not measured	0	NUL MEASURED	~ / U	steel		+
Found	GNS	10040	spring	Rotorua (south)	14/01/2005	2793263	6327389	GPS	20	365	EST-MAP	20		0				1	+
Found	GNS	10042	spring	Rotorua (south)	14/01/2005	2793900	6325500	EST-MAP	200	365	EST-MAP	20		0					
Found	EBOP	10086	bore	Rotorua	26/10/2004	2792136.1	6349133.5	RTK-GPS	0.3	404.6	RTK-GPS	0.3		79		75	steel		
Found	GNS	10044	bore	Rotoiti	19/11/2004	2816831	6345739	GPS	20	295	EST-MAP	20	>200	Could be 60m, not measured.		100	steel		
Found	GNS	10045	bore	Rotoiti	19/11/2004	2803938	6343841	GPS	20	210	EST MAD	20		0					-
Found	GNS	10040	spring	Rotoiti	20/12/2004	2806416	6350746	GPS	20	280	EST-MAP	20		0					-
Found	GNS	10048	spring	Rotoiti	20/12/2004	2807806	6351410	GPS	30	260	EST-MAP	20		0					
Found	GNS	10049	spring	Rotoiti	17/12/2004	2810524	6349918	GPS	20	300	EST-MAP	20		0					
Found	GNS	10050	spring	Rotoiti	17/12/2004	2811002	6349869	GPS	20	280	EST-MAP	20		0					
Found	GNS	10051	spring	Rotoiti	17/12/2004	2810317	6350178	GPS	20	274	EST-MAP	20		0					+
Found	GNS	10053	spring	Rotoiti	24/11/2004	2804752	6348026	GPS	20	295	EST-MAP	20		0					
Found	GNS	10058	spring	Rotoiti	5/01/2005	2803221	6349590	GPS	20	290	EST-MAP	20		0					
Found	GNS	10059	spring	Rotoiti	7/01/2005	2806792	6350371	GPS	20	275	EST-MAP	20		0					
Found	GNS	10060	spring	Rotoiti	7/01/2005	2806910	6353107	GPS	30	222	EST-MAP	20		0					
Found	GNS EBOP	10061	spring	Rotorua	08/10/2005	2816180	6349343	GPS	20	380 470	EST-MAP	20	76	0 88m		150	steel to 104m		
Found	EBOP	10063	bore	Rotorua	11/10/2004	2787340	6347868	GPS	20	470	LOT WA	20	85	0011		100	3100110 10411		
Found	EBOP	10064	bore	Rotorua	11/10/2004	2790095	6347817	GPS	20				85			100			
Found	EBOP	10065	bore	Rotorua	11/10/2004	2790154	6347828	GPS	20				75						
Found	EBOP	10066	bore	Rotorua	11/10/2004	2790431	6347537	GPS	20										
Found	EBOP	10067	bore	Rotorua	11/10/2004	2790491	6347410	GPS	20										1
Found	EBOP	10069	bore	Rotorua	12/10/2004	2790991	6340809	GPS	20										
Found	EBOP	10070	bore	Rotorua	12/10/2004	2791248	6340922	GPS	20										
Found	EBOP	10071	pump from stream	Rotorua	12/10/2004	2788018	6340324	GPS	20										
Found	EBOP	10072	bore	Rotorua	12/10/2004	2787643	6343121	GPS	20										
Found	EBOP	10073	pump from stream	Rotorua	12/10/2004	2791300	6330300	GPS	20		1	1							+
Found	EBOP	10075	bore	Rotorua	12/10/2004	2802260	6335990	GPS	20	350	EST-MAP	20		SWL ~50m					
Found	EBOP	10076	bore	Rotorua	12/10/2004	2802244	6336266	GPS	20										I
Found	EBOP	10077	bore	Rotorua	12/10/2004	2800951	6336200	GPS	20		<u> </u>								+
Found	EBOP	10078	bore	Rotorua	12/10/2004	2799826	6335424	GPS	20	33F	FST-MAD	20	<u> </u>	SW/1 40_45~					+
Found	EBOP	10079	bore	Rotorua	12/10/2004	2801337	6332808	GPS	20	333	LOT-WAP	20		SVVL 40-40/11					+
Found	EBOP	10081	bore	Rotorua	12/10/2004	2800196	6334825	GPS	20					1					
Found	EBOP	10082	bore	Rotorua	12/10/2004	2791324	6327793	GPS	20	410	EST-MAP	20	72	SWL 31m		65	Steel		1
Found	EBOP	10083	bore	Rotorua	27/10/2004	2788812	6352560	GPS	20	490	EST-MAP	20	over 85m	65		100	steel	<u> </u>	<u> </u>
Found	EBOP	10085	bore	Rotorua	26/10/2004	2/91320	6350735	GPS	20	415	EST-MAP	20	<u> </u>	91.4 67 and 70		75	steel		+
Found	EBOP	10087	bore	Rotorua	26/10/2004	2791754	6350951	GPS	20	395	EST-MAP	20	1	82.2		75	steel		+
Found	EBOP	10089	bore	Rotorua	26/10/2004	2794800	6350400	GPS	20	435	EST-MAP	20	220	152		75	steel	i	1
Found	EBOP	10090	bore	Rotorua	26/10/2004	2795528	6351357	GPS	20	355	EST-MAP	20		116		75	steel		
Found	EBOP	10091	bore	Rotorua	26/10/2004	2793200	6350600	GPS	20	385	EST-MAP	20	153.6	89		100 + 75	steel	L	
Found	EBOP	10093	bore	Rotorua	04/44/0004	2789052	6341739	GPS	20							400			+
Found	EBOP	10094	bore	Rotorua	04/11/2004	2788321	6343803	GPS GPS	20	350	EST-MAP	20	55 80	about halfway up	ł	100	steel		+
Found	EBOP	10096	bore	Rotorua	04/11/2004	2789602	6344551	GPS	20	000	201 MAP	20	60 (?)	about narway up				1	†
Found	EBOP	10097	bore	Rotorua	04/11/2004	2790867	6343845	GPS	20	305	EST-MAP	20	90	18	<u> </u>	100		open hole	open hole
Found	EBOP	10098	bore	Rotorua	04/11/2004	2791134	6344513	GPS	20	305	EST-MAP	20	61	14		100		0	52
Found	EBOP	10099	bore	Rotorua	04/11/2004	2791106	6344507	GPS	20	305	EST-MAP	20	122	15		150		0	52
Found	EBOP	10100	bore	Rotorua	05/11/2004	2793206	6347500	GPS	20	330	EST-MAP	20	/0	around 45		100		0	12
Found	EBOP	10102	bore	Rotorua	05/11/2004	2793251	6347197	GPS	20	330	EST-MAP	20		18?					+
Found	EBOP	10103	bore	Rotorua	05/11/2004	2794211	6347630	GPS	20						<u> </u>				
Found	EBOP	10104	bore	Rotorua	25/11/2004	2788782	6340572	GPS	20										
Found	EBOP	10105	bore	Rotorua	25/11/2004	2789606	6345975	GPS	20	365	EST-MAP	20	65	44		100		I	+
Found	EBOP	10106	hore	Rotorua	25/11/2004	27894679	6346914	GPS GPS	20		+	+	+	1	<u> </u>				surface
Found	EBOP	10108	bore	Rotorua	25/11/2004	2789850	6346088	GPS	20	1	1	1			l			1	deepwell
Found	GNS	10109	bore	Rotoiti		2822400	6362400	EST-MAP	100	105	EST-MAP	20	160	42		150	steel	110	160
New	GNS	10110	bore	Rotorua	17/03/2005	2801502.1	6335698.2	RTK-GPS	0.3	335.6	RTK-GPS	0.3	43.5	28.97	PVC casing	100	PVC	37.5	43.5
New	GNS	10111	bore	Rotorua	17/03/2005	2788703.8	6346607.6	RTK-GPS	0.3	416.5	RTK-GPS	0.3	150	59.2	Ground level	80/50	PVC	138	150
r-ound New	GNS	10112	bore	Rotorua	21/03/2005	2791569.6	6342323.5	RTK-GPS	0.3	286.8	RTK-GPS	0.3	68.5	-U.66 9.77	PVC casing	150 50	Steel PVC	62.5	68.5
New	GNS	10114	bore	Rotorua	21/03/2005	2791541.2	6342329.3	RTK-GPS	0.3	294.4	RTK-GPS	0.3	26	10.09	PVC casing	50	PVC	20	26
Existing	GNS	10115	bore	Rotorua	17/03/2005	2794701.7	6347715.9	RTK-GPS	0.3	338.4	RTK-GPS	0.3		55.88					I
Found	EBOP	10116	bore	Rotorua	31/03/2005	2802506.0	6339362.0	GPS	20	310	EST-MAP	20	29.27	16.18	Steel casing	100			1

Found	EBOP	10117	bore	Rotorua	31/03/2005	2802391.0	6339146.0	GPS	20	320	EST-MAP	20	40.88	31.13	Steel casing	100		
-------	------	-------	------	---------	------------	-----------	-----------	-----	----	-----	---------	----	-------	-------	--------------	-----	--	--

Appendix 4.2 Data used for the piezometric map.

GNS Site Ref	Feature type	Easting	Northing	Bore depth (m)	Elevation (m)	Static water level	RLwaterlevel	Elevation method
1	bore	2803500	6331600	29	357	3.66	353.34	DTM
2	bore	2780000	6374200	222.5	120	80.77	39.23	DTM
3	bore	2802300	6374000	542.5	31	13.72	17.28	DTM
4	bore	2788000	6373400	155.4	138	100.6	37.4	DTM
6	bore	2776500	6373500	121.9	176	31.1	144.9	DTM
7	bore	2785300	6373300	242.6	160	39	121	DTM
8	bore	2788300	6335200	159	481	135	346	DTM
9	bore	2812700	6367400	192	40	9.2	30.8	
12	bore	2802400	6370300	110.3	96	72.2	23.8	DTM
17	bore	2801900	6341600	44.2	296	2	294	DTM
18	bore	2803500	6331500	42.7	366	7.62	358.38	DTM
25	bore	2789100	6341500	123.5	328	40	270.3	DTM
27	bore	2803400	6331500	67.1	396	16	380	DTM
29	bore	2803300	6343800	140	337	76.2	260.8	DTM
32	bore	2801900	6340100	32	293	3.4	289.6	
33	bore	2787900	6342200	73	340	45.7	294.3	DTM
42	bore	2817750	6366990	121.9	40	24	16	DTM
43	bore	2803400	6331600	15.3	365	10.7	354.3	DTM
44	bore	2803500	6344600	51	293	3	340 291	DTM
50	bore	2801900	6321500	70.1	520	39	481	DTM
52	bore	2802300	6345300	22.6	283	1	282	DTM
53	bore	2802100	6344500 634200	19	301 220	1.52	299.48	DTM DTM
56	bore	2801900	6341700	19.5	207	13	295	DTM
57	bore	2807000	6331400	26	365	7.9	357.1	DTM
58	bore	2794700	6347800	60	341	33.1	307.9	DTM
59	bore	2794500	6331300	92	417	4 66	351	DTM
64	bore	2803300	6330800	19.5	352	7.3	344.7	DTM
65	bore	2798900	6337200	19.5	288	-0.1	288.1	DTM
66	bore	2802100	6344900	25	300	1	299	DTM DTM
69	bore	2797200	6347100	64	297	27	270	DTM
70	bore	2788500	6325400	97.6	359	12	347	DTM
71	bore	2776900	6342800	85.5	560	61	499	DTM
73	bore	2807100	6331800	32	389	12	231	DTM
74	bore	2789300	6341400	18.9	318	3	315	DTM
78	bore	2810000	6371000	335	20	9.1	10.9	DTM
/9	bore	2781000	6370100	91.4	214	18.3	-26.1	DIM DTM
81	bore	2782400	6369400	176.8	247	89.92	157.08	DTM
82	bore	2809200	6367200	100.6	60	41.15	18.85	DTM
83	bore	2803650	6365400	112.8	152	32	120	DTM
85	bore	2785400	6368000	107.5	301	65.53	235.47	DTM
86	bore	2809800	6369800	135.9	20	22.58	-2.58	DTM
88	bore	2778500	6371100	195.1	188	49.68	138.32	DTM
90	bore	2788300	6368800	298.7	314	61.87	200.00	DTM
92	bore	2786800	6372400	70.1	207	17.68	189.32	DTM
93	bore	2809500	6368500	48	40	18	22	DTM
94	bore	2819000 2806750	<u>6356100</u> 6371550	<u>ן 15</u> אפ	160	21	149	DTM
96	bore	2809000	<u>63</u> 67400	98	55	27	28	DTM
97	bore	2806500	6368600	130	65	63	2	DTM
98	bore	2818800	6366/00 6368/00	16/	38	31	7 0	DTM DTM
100	bore	2810300	6370600	114	20	14	6	DTM
101	bore	2819490	6371720	9	5	1	4	DTM
102	pore	2810600	6368200	180 כד	42	30	12 115	DTM
105	bore	2804040	6348180	40	287	7.3	279.7	DTM
107	bore	2782200	6372500	212	180	125	55	DTM
110	bore	2806700	6369400	124	59	56	3	DTM
111	bore	2810900	6372000	114.3	19	10.4	8.6 9.4	DTM
114	bore	2810800	6371880	12	17	4	13	DTM
115	bore	2782300	6372200	237.7	184	112	72	DTM
11/	bore	2813800	<u>6365200</u> 6373730	137 25	60 0	//./ 0	-1/./	DTM DTM
119	bore	2769600	6367600	120	418	23	395	DTM
120	bore	2817300	6365500	128	59	24	35	DTM
122	bore	2802600	6367500	201.2	140	116.4	23.6	DTM
123	bore	2801400	6347500	249.9	500	50.4 73.6	20.0 426.4	DTM
125	bore	2788000	6347000	134.1	447	77.1	369.9	DTM

GNS Site Ref	Feature type	Easting	Northing	Bore depth (m)	Elevation (m)	Static water level (m)	RLwaterlevel	Elevation method
126	bore	2780200	6373100	268.2	143	115.8	27.2	DTM
127	bore	2789300	6344700	103.6	341	51.8	289.2	DTM
120	bore	2802300	6345000	37.5	284	3.6	280.4	DTM
131	bore	2817600	6367100	158.5	39	18	21	DTM
132	bore	2811600	6366700	195.1 79.2	<u> </u>	44.8	12.2	
133	bore	2782400	6373100	115.8	160	66.1	93.9	DTM
136	bore	2806500	6371600	109.7	39	27.13	11.87	DTM
137	bore	2779510	6372100	283.5	185	40.3	534.7	DTM
140	bore	2812100	6368500	73.15	30	16.76	13.24	DTM
142	bore	2781400	6369200	121.9 149.4	246	59.74	186.26 249.39	DTM DTM
143	bore	2780200	6341800	99.06	587	57.61	529.39	DTM
145	bore	2801200	6336600	61	315	28.04	286.96	DTM
146	bore	2815500	6367000	/8	<u> </u>	26.9	23.1	DTM DTM
149	bore	2810200	6370000	124	20	19.2	0.8	DTM
150	bore	2805300	6372700	95	23	60.2	-37.2	DTM
155	bore	2780800	6343400	109	337	61.3	275.7	DTM
160	bore	2814100	6367500	82	45	10	35	DTM
161	bore	2813000	6355900	110	<u>196</u> 338	78.6	<u>117.4</u> 202	DTM DTM
162	bore	2784000	6347000	100	533	63	470	DTM
165	bore	2785000	6347500	137	529	78	451	DTM
166	bore	2802800	<u>6339900</u> 6328800	/4.5 32 5	<u>318</u> 363	48 8	270 355	DTM
168	bore	2789400	6336400	39	380	15	365	DTM
169	bore	2802500	6344400	69.8	319	20.4	298.6	DTM
170	bore	2787800	633300	67 242	409	47	362	DTM
172	bore	2787700	6339800	45	309	24	285	DTM
173	bore	2801920	6345170	43.5	285	3	282	DTM
174	bore	2795000	6324800	73	418	32.5	382.2	DTM
176	bore	2800500	6347600	130.5	406	81.9	324.1	DTM
177	bore	2803500	6342000	40	298	12	286	DTM DTM
170	bore	2788000	6342000	82.5	319	56.5	262.5	DTM
180	bore	2789000	6336700	81.5	440	53.7	386.3	DTM
181	bore	2786200	6326000	51.5	584	12.4	5/1.6	DTM DTM
183	bore	2795000	6323600	79	406	36.8	369.2	DTM
184	bore	2789000	6341500	149	333	46	287	DTM
185	bore	2787200	6348270		284 377	88	251	DTM
187	bore	2803500	6331400	31	365	6	359	DTM
189	bore	2789500	<u>6340600</u> 6331800	<u> </u>	309	3	306	DTM DTM
190	bore	2792900	6345800	45	292	16	276	DTM
192	bore	2802500	6345400	19.56	280	1	279	DTM
193	bore	2803300	6331100	32	362	20.1	352 281.9	DTM DTM
198	bore	2797600	6346900	47	297	6.7	290.3	DTM
201	bore	2789500	6341000	45	294	20.1	273.9	DTM
202	bore	2197800	6368500	48	<u>315</u> 27	22.3	292.7	DTM
205	bore	2795500	6359200	225.5	343	159.1	183.9	DTM
206	bore	2782700 2782800	6368500 6367000	182.9 13/1	<u>278</u> דפר	74.7 ۸ د ر	203.3	
207	bore	2788700	6344600	87	353	52	301	DTM
209	bore	2791500	6338100	371.9	567	251.5	315.5	DTM
210	bore	2790300	6374100 6372800	/6.2	<u>341</u> 305	17.7	323.3	DTM
212	bore	2809830	6373380	112.78	12	9.75	2.25	DTM
214	bore	2809360	6367590	143.2	56	44.8	11.2	DTM
216	bore	2805500	6368100	195.1 185.9	200	60	-8 140	DTM
218	bore	2810400	6370500	103.6	19	18.9	1.00E-01	DTM
221	bore	2814780	6374110	74	21	21.2	-0.2	DTM DTM
222	bore	2800400	6371500	85.35	<u> </u>	35.36	63.64	DTM
225	bore	2814600	6370800	144.5	14	2.11	11.89	DTM
226	bore	2808900	6373600	103.6 00	<u>15</u>	7.9 ว	7.1	
231	bore	2799800	6369400	61	161	29.3	131.7	DTM
232	bore	2819400	6361400	12	49	3.5	45.5	DTM
233	bore	2804000	6343300 6345900	1/0.1 73 1	338	46	292	DTM
235	bore	2809700	6370100	138.7	19	23	-4	DTM
237	bore	2801400	6368900	225.5	140	110	30	DTM
238	bore	2817200	6353600	111.2	220	35	185	DTM

GNS Site Ref	Feature type	Easting	Northing	Bore depth (m)	Elevation (m)	Static water level	RLwaterlevel	Elevation method
240	bore	2803900	6343700		336	57	279	DTM
241	bore	2782300	6373500	143.2	152	102	50	DTM
242	bore	2787300	6342400	131.1	380	72	308	DTM
245	bore	2811000	6361200	12.2	73	2	71	DTM
247	bore	2/9//00	6368100	170.7	19/	/3.2	123.8	
249	bore	2809500	6369400	79.2	19	3	16	DTM
250	bore	2809500	6369600	97.5	19	6.1	12.9	DTM
251	bore	2786900	6371000		293	20.7	8.3	DTM
253	bore	2806300	6370300	158.5	45	51.8	-6.8	DTM
254	bore	2800200	6367500	213.4 219.5	200	132.9	67.1 /111	DTM DTM
255	bore	2809600	6374200	85.3	9	9.1	-1.00E-01	DTM
257	bore	2810200	6372950	109.7	13	1.1	11.9	DTM
258	bore	2807100	6369900	97.5	45	41.8	3.2	DTM
261	bore	2786900	6372500	262.1	206	73.2	132.8	DTM
262	bore	2781100	6367700	121.9	279	59.4	219.6	DTM
203	bore	2781000	6371200	128	17	5.4	11.6	DTM
266	bore	2809820	6373380	100.6	12	9.7	2.3	DTM
267	bore	2809800	6361600	254.5 135	140	20.4	<u> </u>	
269	bore	2781200	6369600	133	239	53.34	185.66	DTM
270	bore	2781200	6367800	135	279	64	215	DTM
2/1 272	bore	2781100 2807230	6373100	400 118.5	142	6.57 17.3	135.43	DTM
273	bore	2806000	6370800	148	43	44.2	-1.2	DTM
274	bore	2803600	6343800	159	340	64	276	DTM
275	bore	2790100	6368600	43	302	30	249	DTM
277	bore	2781500	6368100	130	280	60.96	219.04	DTM
278	bore	2779790	6340730	113 96.4	579 570	55	524	DTM DTM
280	bore	2803800	6343800	137	338	61	277	DTM
281	bore	2802100	6329700	15.08	431	10	421	DTM
282	bore	2847040	6344900	80	13	42	-29 459	
284	bore	2788000	6347200	124	459	72	387	DTM
285	bore	2805500	6349100	27.5	311	3	308	DTM
286	bore	2802000	6341500	24	295	4.5	290.5	DTM
288	bore	2794600	6336600	44	285	1	284	DTM
290	bore	2786500	6343000	124	414	66	348	DTM
291	bore	2796300	6322750	67	445	40.5	404.5	DTM
293	bore	2809950	6344500	19	296	1	295	DTM
294	bore	2810900	6339100	44	320	16.//	303.23	DTM DTM
296	bore	2787000	6339000	86	375	10	365	DTM
297	bore	2802500	6342000	80	299	52	247	DTM
298	bore	2803900	6384640		163	6	157	DTM
300	bore	2802000	6323000	19	543	8	535	DTM
301	bore	2786000	6347000	147.5	499	74	425	DTM
302	bore	2801500	6341500	30	299	2	297	DTM
304	bore	2786400	6373500	68.58	176	18.9	157.1	DTM
305	bore	2786380 2781400	<u>6373390</u> 6369100	123.4	1/8 248	15.83 52.43	162.17 195 57	DTM
307	bore	2781500	6368300	164.6	272	64.01	207.99	DTM
308	bore	2812000	6367100	204.2	51	17.09	33.91	
309	bore	2787700	6362200	283.5	264	41.73	92.01	DTM
311	bore	2782100	6373200	335.3	149	97.54	51.46	DTM
312	bore	2784400	6343200	128 52	483 295	60 27 50	423 257 42	
313	bore	2787000	6368800	86	300	49	257.42	DTM
315	bore	2805900	6348700	38	287	23.5	263.5	DTM
316	bore	2805/00	<u>6349200</u> 6366200	61 146	301	<u> </u>	249 256 5	DTM DTM
319	bore	2770600	6369500	68	380	25	355	DTM
320	bore	2784500	6369600	176	263	82	181	DTM
321	bore	2780900	6366200	148 93	321	65 48	256	DTM
323	bore	2803400	6342800	93	340	49	291	DTM
324	bore	2807100	6370300	102.5	40	47	-7 סדר	DTM DTM
325	bore	2778200	6342300	137	559	65	494	DTM
327	bore	2810860	6369900	23	20	12	8	DTM
328	bore	2811600	6366600	51.5 75	58 20	14.3 10 s	43.7 12 ƙ	
330	bore	2809400	6372600	17.37	15	10.5	4.5	DTM

GNS Site Ref	Feature type	Easting	Northing	Bore depth (m)	Elevation (m)	Static water level	RLwaterlevel	Elevation method
331	bore	2811300	6366500	68.5	59	26	33	DTM
332	bore	2803700	6346600	79	289	2.7	286.3	DTM
333	bore	2788400	6369000	60	300	21	273	DTM
335	bore	2794200	6335800	79	284	2.25	281.75	DTM
336	bore	2787800	6364200	185	399	/3	326	
339	bore	2817900	6364000	18	36	0.5	35.5	DTM
340	bore	2809500	6368100	93	42	33	9	DTM
341	bore	2780800	6373300	05 18	138	14	8	DTM
343	bore	2817800	6354800	24	178	9	169	DTM
344	bore	2809100	6371700	17	18	11	7	DTM
345	bore	2814300	6353900	132	233	102	131	DTM
347	bore	2806000	6370000	115.8	63	20.7	42.3	DTM
349	bore	2816220 2805400	6368110	121.9	20	7.62	-35	
352	bore	2804700	6372800	95.7	32	56	-24	DTM
354	bore	2799600	6368800	219.5	178	91.44	86.56	DTM
355	bore	2809800	6368300	46.5	37	10	172	DTM
357	bore	2818900	6356300	72	141	30	111	DTM
358	bore	2809200	6372500	18	16	10	<u> </u>	DTM DTM
360	bore	2782800	6367600	160	233	77	222	DTM
369	bore	2810590	6374180	5.48	7	4.5	2.5	DTM
370	bore	2799600	<u>6362800</u> 6362600	262 120	280	152 40	128 	
373	bore	2818200	6373300	48	2	-4	6	DTM
374	bore	2782900	6368000	147	285	75	210	DTM
375	bore	2814200	6367000	69 75	45	25.5	292	DTM
377	bore	2813500	6367400	69	24	21	3	DTM
378	bore	2818100	6355100	36	162	8	154	DTM
379	bore	2809300	6371600	54	236	21	4.5	DTM
381	bore	2785400	6374000	242	143	78	65	DTM
382	bore	2809290	6372370	18	16	8 25	8	DTM DTM
384	bore	2817700	6355600	90	159	30	129	DTM
385	bore	2812500	6372800	60	11	2	9	DTM
386	bore	2814500 2813900	6369300	132	20	0.5	19.5	DTM
388	bore	2818800	6356200	81	145	15	130	DTM
389	bore	2809100	6367400	87	56	27	29	DTM
390	bore	2796600	6359400	258	341	155	186	DTM
392	bore	2808600	6371500	18	19	14	5	DTM
393	bore	2809000	6368100	<u> </u>	39	33	6	DTM DTM
395	bore	2802400	6342400	21	300	3.5	296.5	DTM
396	bore	2814120	6370400	25	16	9	7	DTM
397	bore	2818200	6373800	153	119	110	64	DTM
399	bore	2804300	6319300	120	519	60	459	DTM
400	bore	2809110	6374210	16	11	7	4	DTM
401	bore	2803500	6342900	90	339	48	291	DTM
403	bore	2809100	6369700	39	20	12	8	DTM
404	bore	2810100 2809500	<u>6368500</u> 6371600	84	38	20	18	DTM
406	bore	2790300	6374000	13.5	291	7	284	DTM
407	bore	2809000	6374200	14	11 2 4 2	9.5	1.5	DTM
408	bore	2191220	6345800	60	289	54 12	293	DTM
411	bore	2778740	6388640	225	0	160	-160	DTM
412	bore	2799700 2817500	6371800	138 120	<u>118</u> го	80 25	38	DTM
416	bore	2795800	<u>636</u> 8500	85	179	45	134	DTM
417	bore	2809100	6374200	16	11	7	4	DTM
418	bore	281/400	6372300	122	51	28	23	DTM
420	bore	2810856.7	6349217.7	95	294	40	254	RTK-GPS
421	bore	2808900	6369500	35	17	15	2	DTM DTM
422	bore	2817800	6365700	74	40	20	20	DTM
424	bore	2807300	6345300	13	319	1	318	DTM
425	bore	2787000	6324300	30	361	6 05	355 200 5	DTM
420	bore	2782000	6340800	87.5	555	52	503	DTM
428	bore	2787500	6342000	118	340	58.5	281.5	DTM
429 430	bore	2789500 2803010	<u>6348400</u> 6342070	<u>250</u> วร	441	88	353 294	DTM DTM
431	bore	2800700	6331000	30	580	13	567	DTM

GNS Site Ref	Feature type	Easting	Northing	Bore depth (m)	Elevation (m)	Static water level	RLwaterlevel	Elevation method
432	bore	2804200	6346580	56	300	22	278	DTM
433	bore	2807400	6345600	19	294	5.4	288.6	DTM
434	bore	2807300	6345600	38	313	3.6	309.4	
436	bore	2802300	6343490	56	303	19	284	DTM
437	bore	2788500	6335000	164	482	140	342	DTM
440	bore	2802530	6343420	26	301	21.52	279.48	DTM
442	bore	2791010	6343970	85.3	330	18.3	281.7	DTM
445	bore	2788600	6346600	95	418	63.93	354.07	DTM
456	bore	2786200	6347800	180	504	85	419	DTM
458	bore	2786300	6364500	8.7	503	80	418	DTM
460	bore	2818000	6368800	133	20	1.9	18.1	DTM
464	bore	2780800	6371700	251.46	185	124.66	60.34	DTM
465	bore	2818600	6368400	130	20	27	19	
469	bore	2816400	6369600	10	10	8	9	DTM
470	bore	2817400	6369200	3.66	18	2.44	15.56	DTM
4/1	bore	2808800	63/3000	54.86 274 3	17	27.43	-10.43	
474	bore	2814000	6365500	152.4	58	5.49	52.51	DTM
475	bore	2809700	6370300	144	19	23	-4	DTM
476	bore	2812920	6373490	91	11 דר	3.6	7.4	DTM
481	bore	2810500	6368800	146.3	<u> </u>	21.34	290.66	DTM
492	bore	2788400	6368700	106.68	315	21.34	293.66	DTM
498	bore	2779900	6373900	173.7	126	99.1	26.9	DTM
501	bore	2816900	6353400 6373800	117.35	220	5/ / A R	163 0 2	DTM
509	bore	2786900	6372000	178.31	221	53.34	167.66	DTM
517	bore	2817000	6353200	110.64	220	51.82	168.18	DTM
520	bore	2787200	6371100	121.04	241	27	214	DTM
523	bore	2780800	6373500	99.36	20	12.19	7.81	DTM
524	bore	2781600	6369200	152	239	9.14	229.86	DTM
529	bore	2813900	6366700	86.87	60	21.34	38.66	DTM
531	bore	2808100	6368200	70.1	38 300	21.34	16.66	
537	bore	2812400	6369200	153.92	19	-1.84	20.84	DTM
538	bore	2811300	6368000	121.92	22	7.01	14.99	DTM
539	bore	2786600	6373300	122	182	25	157	DTM DTM
546	bore	2809000	6363900	131.06	58	21.34	36.66	DTM
547	bore	2786500	6372100	290	200	68	132	DTM
548	bore	2813800	6374000	60	14	2	12	DTM
552	bore	2780700	6372500	60.96	174	36.58	137.42	DTM
555	bore	2791100	6389900	96	0	1	-1	DTM
556	bore	2810136.1	6341009.7	53.3	415.9	47.925	367.975	RTK-GPS
563	bore	2785300	6369800	67.06	237	48.77	188.23	DTM
566	bore	2786500	6372900	85	191	17	174	DTM
569	bore	2787700	6343200	79	360	65	295 E 49	DTM
572	bore	2806800	6371300	106.68	59 19	<u> </u>	5.48 10	DTM
574	bore	2811200	6371800	<u> </u>	16	3.7	12.3	DTM
576	bore	2802600	6367100	204.22	156	116.43	39.57	DTM
580 582	bore	2810500	6371880	6.1 30 5		4.5/	13.43	DTM
585	bore	2782100	6374000	167.6	131	117.3	13.7	DTM
586	bore	2807100	6372100	45.72	17	30.48	-13.48	DTM
588	bore	2780900	6374100	100.6 6 1	121	60 3	61 10	DTM
596	bore	2786100	6373900	68.58	160	30.78	129.22	DTM
599	bore	2780700	6366300	137.5	319	57.9	261.1	DTM
600	bore	281/600	6366900	91.4 131.04	40 256	45./ 54.86	-5./ 201 14	DTM
602	bore	2798700	6368100	149	227	115.9	111.1	DTM
604	bore	2809900	6372200		17	2.44	14.56	DTM
607	bore	2800700	6367800	201.17	180 155	123.44	56.56	
609	bore	2810400	6369900	33.54	20	140	5.67	DTM
610	bore	2805100	6366700	106.68	99	89.92	9.08	DTM
613	bore	2818700	6369400	116	20	7	13	DTM
617	bore	2803000	6368200	244 78	<u> </u>	27.5	291.5	DTM
631	bore	2803200	6331200	34.65	396	7.23	388.77	DTM
633	bore	2803200	6331000	25.23	378	10.87	367.13	DTM
635	bore	2802300	6345700 6367600	26.89 217	280 223	0.73 45	2/9.2/	DTM
637	bore	2787300	6367000	102	344	60	284	DTM
638	bore	2793940	6333400	140.5	301	12	289	DTM
640	bore	2787950 2804000	<u>6342860</u> 6319500	89 221	34/ 557	56 24	291 533	DTM

GNS Site Ref	Feature type	Easting	Northing	Bore depth (m)	Elevation (m)	Static water level	RLwaterlevel	Elevation method
643	bore	2803200	6342300	42	298	0.4	297.6	DTM
644	bore	2786600	6369200	72	269	39	230	DTM
645	bore	2811200	6371700	26	8	4	-2.5	
647	bore	2803900	6342800	144	345	62	283	DTM
648	bore	2803100	6342400	120	299	38	261	DTM
649	bore	2811500 2785300	6373000	96 	13	22	12	
652	bore	2812900	6374000	64	11	0.9	10.1	DTM
653	bore	2816600	6367600	58	31	24	7	DTM
654	bore	2809600	6364900	140	38	8	30	DTM
656	bore	2812300	6371600	125	11	24	-6	DTM
657	bore	2808300	6368300	72	26	21	5	DTM
658	bore	2809100	6373500	27	15	9.5	5.5	DTM
661	bore	2802300	6368600	22	299	11	288	DTM
662	bore	2787500	6368700	80	299	58	241	DTM
663	bore	2809200	6368000	196	42	32	10	DTM
665	bore	2808100	6364900	07	365	40	305	DTM
666	bore	2809913.9	6349463.2	119	331.7	78	253.7	RTK-GPS
667	bore	2809500	6361500	78	151	52.5	98.5	DTM
668	bore	2803100	6370630	195.18	94	/8.1 79.4	15.9 59.6	
674	bore	2806050	6367950	219	80	73	7	DTM
681	bore	2811560	6367660	152.4	39	51.8	-12.8	DTM
682	pore	2801400	6372500	128	64	<u> </u>	12 סב	
685	bore	2809800	6370230	144	19	28	-00	DTM
687	bore	2791530	6363470	122	401	44	357	DTM
689	bore	2788200	6344700	102	377	66	311	DTM
690	bore	2869700	6326800	16	56	9	-55	DTM
692	bore	2810400	6373900	17	8	9.5	-1.5	DTM
693	bore	2816000	6369800	108	17	7.5	9.5	DTM
695	bore	2809400	6349600	180	20	75	-52	DTM
697	bore	2809600	6371800	18	17	6	11	DTM
698	bore	2820400	6362700	96	86	2	84	DTM
699 702	bore	2808810	6372820	88	298	11.5	5.5 296.5	
704	bore	2840700	6350500	84	0	52	-52	DTM
705	bore	2769850	6367100	95	429	20.9	408.1	DTM
706	bore	2810430	6373840	108	286	7.5	283	
708	bore	2807550	6332150	70	318	17	301	DTM
709	bore	2846400	6323700	117	90	55	35	DTM
710	bore	2848500	6346500	15	30	15	15 57	
716	bore	2846700	6345900	86	5	18	-13	DTM
718	bore	2820400	6364800	150	87	10	77	DTM
719	bore	2807800	6349100	64	296	38	258 _50	
721	bore	2805700	6364700	60	111	13	98	DTM
723	bore	2872500	6341000	30	0	6	-6	DTM
725	bore	2785500	6369500	/2	209	30	1/9	
728	bore	2785500	6373700	232	160	72	88	DTM
729	bore	2837200	6303300	105.8	170	9.05	160.95	DTM
740	bore	2810400 278/100	<u>63/0100</u> 637//00	141 120	20 119	1/.1	2.9 10	
741	bore	2767500	6397400	42	19	8	11	DTM
745	bore	2857100	6354000	126	0	69	-69	DTM
746	bore	2809500 2778000	6344500 6390800	43	289	2.5	286.5 1 <i>1</i> / 1	
748	bore	2813500	6374100	63	12	0.95	11.05	DTM
750	bore	2784777.9	6343300.91		472.934	47.57	425.364	GPS
751	bore	2788826.84	6341450.97 6341450.97	<u> </u>	336.606	45.82 51 75	290.786	GPS GPS
753	bore	2791338.04	6343089.65		288.38	2.32	235.002 286.06	GPS
754	bore	2788781.2	6340580.05		297.394	2.61	294.784	GPS
755	bore	2788902.28	6340489.35		296.065	2.63	293.435	GPS GPS
757	bore	2787677.58	6347433.21		461.652	47.03	320.587	GPS
758	bore	2786236.89	6347882.17		541.981	89.97	452.011	GPS
759	bore	2784409.81	6345314.66		508.711	76.32	432.391	GPS
760	bore	2788183 7	6344643.39		419.256 385 751	68.11 52.48	351.146 333.271	GPS
762	bore	2792912.42	6346014.83		300.801	15.1	285.701	GPS
763	bore	2794701.7	6347715.9		338.4	55.88	282.52	RTK-GPS
778	pore	2/62700	6369100 636800	73.2	60 70	<u>10.9</u>	49.1	
783	bore	2760600	6364000	93.8	80	24.6	55.4	DTM
786	bore	2762800	6370000	125	100	111	-11	DTM

GNS Site Ref	Feature type	Easting	Northing	Bore depth (m)	Elevation (m)	Static water level (m)	RLwaterlevel	Elevation method
787	bore	2763500	6366700	28.5	69	7	62	DTM
788	bore	2760400	6369400	30	60	6.9	53.1	DTM
789	bore	2760500	6365200	8.23	70	4.3		DTM
792	bore	2763400	6366200	9.5	71	4.5	66.5	DTM
794	bore	2762000	6367700	70	63	14.3	48.7	DTM
795	bore	2760700	6368500	10.3	63	3.0	59.4 62.6	DTM
797	bore	2760600	6366300	34.5	70	7.73	62.27	DTM
799	bore	2790000	6316800	55	343	36.6	306.4	DTM
800	bore	2788400	6321100	43	347	9	338	DIM
806	bore	2797500	6318400	195	400	30.5	448.5	DTM
807	bore	2793000	6328200	46	369	17	352	DTM
808	bore	2787100	6321600	73	340	10.0	339	DTM
810	bore	2789300	6339600	122	547	85	462	DTM
812	bore	2797000	6323700	65.3	440	39	401	DTM
813	bore	2779200	6339700	75	579	55	524	DTM
814	bore	2785000	6332800	70	279	43	482	DTM
825	bore	2761000	6358400	85	91	18.75	72.25	DTM
828	bore	2760500	6323400	100	358	47	311	DTM
839	bore	2761800	6338100	128	307	107	200	
849	bore	2760800	6358000	88	101	16.5	84.5	DTM
851	bore	2764200	6326600	65	352	41	311	DTM
923	bore	2764900	6319900	73.76	399	35.7	363.3	DTM
932	bore	2763500	6326500	90	362	72	290	DTM
938	bore	2765200	6325900	166	358	73	285	DTM
943	bore	2760900	6358400	54	90	13	77	DTM
950	bore	2760700	6337100	98	260	59.7	200.3	DTM
956	bore	2767500	6331600	96	424	50	374	DTM
960	bore	2766000	6354000	186	257	72.5	184.5	DTM
961	bore	2764500	6359500	60.9	161	23./	137.3	
966	bore	2761400	6352400	112	191	90	101	DTM
972	bore	2762200	6329000	64.3	335	52.8	282.2	DTM
991	bore	2760200	6359400	53	90	22	68	DTM
993	bore	2764800	6320300	59.5	341	36	343	DTM
1002	bore	2763700	6326700	77	357	39	318	DTM
1003	bore	2765500	6352500	135	301	84	217	DTM
1010	bore	2759900	6321300	100	368	20.71	347.29	DTM
1013	bore	2762800	6324900	70	354	30	324	DTM
1018	bore	2764300	6346900	180	323	121	202	DTM
1020	bore	2760500	6336500	80	249	42	207	
1042	bore	2765200	6350300	60	228	14	214	DTM
1046	bore	2760400	6361900	95	82	13	69	DTM
1047	bore	2762300	6364100	107	89	17	72	DTM
1048	bore	2760800	6331900	132	292	60	234	DTM
1050	bore	2760600	6333600	240	277	70.2	206.8	DTM
1052	bore	2761400	6333600	217	279	76	203	DTM
1053	bore	2761700	<u> </u>	201	398	5.7 5	<u> </u>	DTM
1056	bore	2763800	6322600	32	399	1.8	397.2	DTM
1057	bore	2760800	6369900	82.5	61	18	43	DTM
1058	bore	2761500	6321700	53	373 64	32	341 35	DTM
1060	bore	2761400	6331500	168	343	69	274	DTM
1061	bore	2763300	6328300	156	381	110	271	DTM
1062	bore	2768300	6327/00	103 25	410 410	30.2	379.8	DTM
1064	bore	2760200	6365900	13.5	69	6.4	62.6	DTM
1065	bore	2760500	6327500	106.5	334	40	294	DTM
1067	bore	2/66600 270221	6319600	117	420	57	363 215	
1074	bore	2791945	6342100		286	2.74	283.26	DTM
1076	bore	2803342	6332487		358	1.15	356.85	DTM
1078	lake	2794206	6345831		281	0	281	LAKE
1079	lake	2793237	<u> </u>		281	0	281	LANE
1081	lake	2794448	<u>633</u> 9925		281	0	281	LAKE
1082	lake	2795029	6338618		281	0	281	
1083	lake	2795610 2796722	6336778		281 281	0	281 281	LAKE
1085	lake	2796578	6335471		281	0	281	LAKE
1086	lake	2797546	6336778		281	0	281	LAKE
1087	lake	2799676	<u>6338569</u> 6340990		281	0	281	LAKE

GNS Site Ref	Feature type	Easting	Northing	Bore depth (m)	Elevation (m)	Static water level (m)	RLwaterlevel	Elevation method
1089	lake	2801467	6343265		281	0	281	LAKE
1090	lake	2800838	6345202		281	0	281	LAKE
1091	lake lake	2798805	6345734		281	0	281	LAKE
1092	lake	2793964	6345492		281	0	281	LAKE
1094	lake	2796723	6341765		281	0	281	LAKE
1095	lake lake	2797788 2803404	6339828		281	0	281	LAKE
1070	lake	2803743	6345008		280	0	280	LAKE
1098	lake	2802774	6345008		280	0	280	LAKE
1099	lake	2805970	6346509		280	0	280	LAKE
1100	lake	2807519	6346460		280	0	280	LAKE
1102	lake	2809068	6347768		280	0	280	LAKE
1103	lake	2810956	6347090		280	0	280	LAKE
1104	lake	2810859	6344524		280	0	280	LAKE
1106	lake	2815023	6344718		280	0	280	LAKE
1107	lake	2815894	6345637		280	0	280	LAKE
1108	lake lake	2812554 2814151	6346509		280	0	280	LAKE
1110	lake	2814248	6346364		280	0	280	LAKE
1111	lake	2821214	6346286		298	0	298	LAKE
1112	lake	2821146	6347065		298	0	298	LAKE
1113	lake	2820307	6347811		298	0	298	LAKE
1115	lake	2820502	6348556		298	0	298	LAKE
1116	lake	2820502	6349335		298	0	298	LAKE
111/	lake	2819893	<u>6348691</u> 6348149		298 298	0	298 298	LANE
1119	lake	2819317	6346997		298	0	298	LAKE
1120	lake	2818876	6346252		298	0	298	LAKE
1121	lake lake	2819960	6346388		298	0	298	LAKE
1122	lake	2825381	6347133		319	0	319	LAKE
1124	lake	2824534	6347065		319	0	319	LAKE
1125	lake	2824398	6346523		319	0	319	LAKE
1120	lake	2823822	6345913		319	0	319	LAKE
1128	lake	2823484	6346184		319	0	319	LAKE
1129	lake	2822840	6346388		319	0	319	LAKE
1130	lake	2822874	6345879		319	0	319	LAKE
1132	lake	2824229	6345473		319	0	319	LAKE
1133	lake	2824737	6344829		319	0	319	LAKE
1134	lake	2824365	6344253		319	0	319	LAKE LAKF
1136	lake	2824060	6343135		319	0	319	LAKE
1137	lake	2824669	6342424		319	0	319	LAKE
1138	lake lake	2825483 2826194	6342424		319	0	319	LAKE LAKF
1140	lake	2825787	6343339		319	0	319	LAKE
1141	lake	2825415	6343779		319	0	319	LAKE
1142	lake	2825483 2825415	6344694 6345304		319	0	319	LAKE
1143	lake	2825076	6345947		319	0	319	LAKE
1145	lake	2825754	6345879		319	0	319	LAKE
1146	lake lake	2825516	6346557		319 215	0	319	LAKE LAKE
1147	lake	2809831	6338562		315	0	315	LAKE
1149	lake	2809424	6338189		315	0	315	LAKE
1150	lake	2809289	6337410		315	0	315	LAKE
1151	lake	2808611	6335919		315	0	315	LAKE
1153	lake	2807933	6335919		315	0	315	LAKE
1154	lake	2808171	6335309		315	0	315	LAKE
1155	lake	2807425	6334361		315	0	315	LAKE
1157	lake	2806714	6334293		315	0	315	LAKE
1158	lake	2808171	6334124		315	0	315	
1159	lake	2808882	<u> </u>		315	0	315	LAKE
1161	lake	2809661	6334801		315	0	315	LAKE
1162	lake	2809187	6335513		315	0	315	
1163	lake	2809763 2810160	<u> </u>		315	0	315	LAKE
1165	lake	2810305	6337918		315	0	315	
1166	lake	2804647	6332057		355	0	355	LAKE
1167	lake	2804139 2802722	6332091 6332090		355 255	0	355 255	LAKE LAKE
1169	lake	2803665	6330973		355	0	355	LAKE
1170	lake	2804308	6331379		355	0	355	LAKE
1171	lake	2804275	6330702		355	0	355	LAKE
1172	lake	2804918	6330770		355	0	355	LAKE

GNS Site Ref	Feature type	Easting	Northing	Bore depth (m)	Elevation (m)	Static water level	RLwaterlevel	Elevation method
1174	lake	2805257	6331312		355	0	355	LAKE
1175	lake	2804952	6331786		355	0	355	LAKE
11/6	lake lake	2801835	6329448		420	0	420	LAKE
1178	lake	2801032	6328364		420	0	420	LAKE
1179	lake	2801937	6328296		420	0	420	LAKE
1180	lake	2802411	6328432		420	0	420	
1182	lake	2802174	6329177		420	0	420	LAKE
1183	lake	2802513	6327687		396	0	396	LAKE
1184	lake	2802174	6327483		396	0	396	LAKE
1185	lake lake	2801903	6327145		396	0	396	LAKE
1187	lake	2800887	6326704		396	0	396	LAKE
1188	lake	2800311	6326467		396	0	396	LAKE
1189	lake	2799836	6326399		396	0	396	LAKE
1170	lake	2799227	6326060		396	0	396	LAKE
1192	lake	2799972	6325959		396	0	396	LAKE
1193	lake	2800040	6325383		396	0	396	LAKE
1194	lake	2800440	6326060		390	0	390	LAKE
1196	lake	2801395	6326467		396	0	396	LAKE
1197	lake	2801835	6326772		396	0	396	
1198	lake lake	2802716 2807629	6327280		396	0	396	LAKE
1200	lake	2807730	6331075		299	0	299	LAKE
1201	lake	2807391	6330566		299	0	299	LAKE
1202	lake	2807425	6329787		299	0	299	
1203	lake	2807832	6328229		299	0	299	LAKE
1205	lake	2807290	6327788		299	0	299	LAKE
1206	lake	2806815	6327382		299	0	299	LAKE
1207	lake lake	2806172	632/483		299	0	299	LAKE
1200	lake	2807730	6326941		299	0	299	LAKE
1210	lake	2808069	6326298		299	0	299	LAKE
1211	lake	2808408	6325688		299	0	299	
1212	lake	2809051	6325417		299	0	299	LAKE
1210	lake	2810373	6325756		299	0	299	LAKE
1215	lake	2810813	6326196		299	0	299	LAKE
1216	lake lake	2811389	6326399		299	0	299	LAKE
1217	lake	2811626	6324807		299	0	299	LAKE
1219	lake	2811355	6324062		299	0	299	LAKE
1220	lake	2810745	6323791		299	0	299	
1221	lake	2810044	6323282		299	0	299	LAKE
1223	lake	2811965	6323418		299	0	299	LAKE
1224	lake	2812270	6323994		299	0	299	
1225	lake	2812270	6324400		299	0	299	LAKE
1227	lake	2811863	6325349		299	0	299	LAKE
1228	lake	2811762	6325891		299	0	299	LAKE
1229	lake	2811931 2812272	6326501		299	0	299	LAKE LAKE
1230	lake	2812947	6327754		299	0	299	LAKE
1232	lake	2813659	6328195		299	0	299	LAKE
1233	lake	2814336	6328669		299	0	299	LAKE
1234	lake	2815048	<u>0328805</u> 6328872		299	0	299	LAKE
1236	lake	2816335	6329042		299	0	299	LAKE
1237	lake	2815251	6329245		299	0	299	
1238	lake	2814269	6329550 6329585		299	0	299	LAKE
1237	lake	2812507	6330092		299	0	299	LAKE
1241	lake	2811796	6330566		299	0	299	LAKE
1242	lake	2811491	6331142		299	0	299	
1243	lake	2810542	6330770		299	0	299	LAKE
1245	lake	2810068	6330261		299	0	299	LAKE
1246	lake	2809356	6330295		299	0	299	
1247 1247	lake	2808/13	6330431 6330726		299	0	299	LAKE
1240	lake	2808001	6331075		299	0	299	LAKE
1250	lake	2809221	6329245		299	0	299	LAKE
1251	lake	2809221	6327212		299	0	299	LAKE
1252	lake	2811592	6327416		299	0	299	LAKE
1254	lake	2812744	6328839		299	0	299	LAKE
1255	lake	2816877	6318675		437	0	437	
1256	lake	2816403 2816008	6318336 6317806		43/	0	43/	LAKE
1257	lake	2816030	6317218		437	0	437	LAKE
GNS Site Ref	Feature type	Easting	Northing	Bore depth (m)	Elevation (m)	Static water level	RLwaterlevel	Elevation method
--------------	--------------	--------------------	--------------------	----------------	---------------	--------------------	--------------	----------------------
1259	lake	2815454	6316981		437	(11)	437	LAKF
1260	lake	2815488	6316202		437	0	437	LAKE
1261	lake	2816030	6316541		437	0	437	LAKE
1262	lake	2816505	6316981		437	0	437	LAKE
1263	lake	2816810	6316507		437	0	437	LAKE
1264	lake	2816640	6315999		437	0	437	LAKE
1265	lake	2817148	6315931		437	0	437	LAKE
1266	lake	281/623	6316134		437	0	43/	LAKE
1207	lake	2810843	631/421		437	0	437	
1200	lake	2816335	6317523		437	0	437	LAKE
1207	lake	2815488	6316541		437	0	437	LAKF
1363	lake	2813450	6322220		338	0	338	LAKE
1364	lake	2812650	6321700		338	0	338	LAKE
1365	lake	2811176	6321190		338	0	338	LAKE
1366	lake	2809500	6319990		338	0	338	LAKE
1367	lake	2890150	6319940		338	0	338	LAKE
1368	lake	2812300	6320530		338	0	338	LAKE
1369	lake	2813500	6321500		338	0	338	
10002	spring	2010000	63/13355 1		330 360 A	0	330 360 A	
10002	bore	2803760.3	6342407.6	30	307.4	13	294 2	RTK-GPS
10001	bore	2804295.2	6347870.5	9.233	279.7	2.21	277.49	RTK-GPS
10006	bore	2797522.6	6315089	24.4	373.7	9.14	364.56	RTK-GPS
10015	bore	2800988.3	6323383.2	11.59	433.3	1.97	431.33	RTK-GPS
10025	spring	2811904.3	6353153.2		273.1	0	273.1	RTK-GPS
10027	spring	2807014.2	6349590.7		293.1	0	293.1	RTK-GPS
10028	spring	2803524.1	6349025.1		274.4	0	274.4	RTK-GPS
10031	spring	2814730.6	6350066.4		246.9	0	246.9	RTK-GPS
10037	spring	2805849	6348299		306	0	306	EST-MAP
10038	spring	2800139	634/000		295	0	295	EST-MAP
10040	spring	2000043	6327389		290	0	365	EST-MAP
10041	spring	2793900	6325500		365	0	365	EST-MAP
10046	spring	2806383	6349040		310	0	310	EST-MAP
10047	spring	2806416	6350746		280	0	280	EST-MAP
10048	spring	2807806	6351410		260	0	260	EST-MAP
10049	spring	2810524	6349918		300	0	300	EST-MAP
10050	spring	2811002	6349869		280	0	280	EST-MAP
10051	spring	2810317	6349545		300	0	300	EST-MAP
10052	spring	2810813	63/10/26		274	0	274	EST-MAP
10053	spring	2804732	6340020		293	0	293	EST-MAP
10059	spring	2806792	6350371		275	0	275	EST-MAP
10060	spring	2806910	6353107		222	0	222	EST-MAP
10061	spring	2816180	6347909		380	0	380	EST-MAP
10062	bore	2788824	6349343	76	470	88	382	EST-MAP
10075	bore	2802260	6335990		350	50	300	EST-MAP
10079	bore	2/99425	6333922		335	43	292	EST-MAP
10082	bore	2/91324	0321193	12	410	3۱ ۲۵	3/9 10E	EST-MAP
10003	bore	2700012	6352500		490 115	00 01 /	420	EST-MAP
10086	bore	2792136.1	6349133.5		404.6	79	325.0	RTK-GPS
10088	bore	2791754	6350951		395	82.2	312.8	EST-MAP
10089	bore	2794800	6350400	220	435	152	283	EST-MAP
10090	bore	2795528	6351357		355	116	239	EST-MAP
10091	bore	2793200	6350600	153.6	385	89	296	EST-MAP
10092	bore	2795576.4	6349310.4	225	479.3	172.37	306.93	RTK-GPS
10097	bore	2/90867	6343845	90	305	18	000	EST-MAP
10099	boro	2/91106	6344507	122	305	15	290	EST-MAP
10100	hore	2793200 2702251	0347183 6277107	70	330 220	45 10	285	EST-IVIAP FST-MAP
10102	bore	2773231	6345975	65	330	ΔΔ	312	EST-MAP
10109	bore	2822400	6362400	160	105	42	63	EST-MAP
10110	bore	2801502.1	6335698.2	43.5	335.38	28.97	306.41	RTK-GPS
10111	bore	2788703.8	6346607.6	150	416.5	59.2	357.3	RTK-GPS
10112	bore	2799747.3	6336770	12	285.945	-0.66	286.605	RTK-GPS

10113 bore	2791569.6	6342323.5	68.5	293.792	9.77	284.022 RTK-GPS
10114 bore	2791541.2	6342329.3	26	294.524	10.09	284.434 RTK-GPS
10116 bore	2802506	6339362	29.27	310	16.18	293.82 EST-MAP
10117 bore	2802391	6339146	40.88	320	31.13	288.87 EST-MAP

Key for elevation method:

DTM	Elevation estimated from a digital terrain model.
EST-MAP	Elevation estimated from a 1:50,000 topographic map.
GPS	Elevation measured using a handheld GPS in differential mode.
LAKE	Mean lake level.
RTK-GPS:	Elevation measured using a RTK GPS in differential mode.

ANALYTICAL REPORT :: EBOP Lake Rotorua Groundwaters Lab. Ref. m. 2501471 2501472 2501491 2501585 2501587 250 Lab. Ref. m. 2501471 2501472 2501491 2501585 2501586 2501587 250 Calcum Date 10/05/2005 10/05/2005 12/05/2005 28/04/2005 26/04/2005	ANALYTICAL REPORT :: EBOP Lake Rotorua Groundwaters Lah. Ref. no. 2501471 2501471 2501491 2501585 2501586 2501587 2501587 2501587 2501587 2501587 2501587 2501587 2501587 2501587 2501587 2501587 2501470 2501470 2501471 2501471 2501471 2501585 2501471 2501587 2501470 2501587 250158	Lab. Ref. no. Collection Date Collection Date Clients Field ID Alkalinity (as HCO3) mg/L pH Analysis Temperature °C Analysis Temperature °C Choride mg/L		TANTINITAT					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Lab. Ref. no. Collection Date Collection Date Clients Field ID Alkalinity (as HCO3) mg/L Analysis Temperature Bromide Bromide Chloride Mg/L		ANALY HUAL F	REPORT :: EI	3OP Lake Roto	rua Groundwai	ers	
Concent Date PUNOS/2003 LUOS/2003 LOOS/2003 LOO3 COO LOO3 COO LOO3 COO	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Contection bate Clients Field ID Alkalinity (as HCO3) mg/L Analysis Temperature °C Bromide mg/L Calcium mg/L	2501471	2501472	2501491	2501585	2501586	2501587	2501588
Alkalinity (as HCO3) mg/L 29 43 45 45 H 6.44 5.17 6.45 6.45 6.45 6.45 6.45 6.45 6.45 6.45 6.45 6.44 5.17 6.45 6.44 5.17 6.45 6.04 6.004	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Alkalinity (as HCO3) mg/L hH haalysis Temperature °C andide mg/L alcium mg/L chloride mg/L	AIRPORT SPRING	MOREA SPRING	WSP 4	SITE 52	SITE 41	SITE 8	KASKA-DP
H 6.44 5.17 6.45 nalysis Temperature °C 14 14 20 bronide mg/L <0.04 0.056 <0.04 <0.04 <0.04 <0.04 Stein mg/L <0.04 0.056 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.004 <0.04 <0.004 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 </th <td>alysis Temperature 6.44 5.17 0.45 alysis Temperature 14 14 20 mile mgl. 0.04 0.056 -0.04 -0.04 mile mgl. 6.5 5.6 4.0 1.4 1.4 3.6 mile mgl. 6.5 5.6 4.0 -0.04 -0.04 -0.04 mile $mgl.$ 5.5 5.6 4.0 1.42 11.9 11.4 3.6 oride $mgl.$ 1.75 5.9 7.8 5.1 3.6 0.04 ductivity $\mugl.$ 0.72 0.023 0.204 -0.04 -0.04 mgl. 0.71 0.023 0.221 0.098 0.060 mgl. 0.71 0.72 0.027 0.023 0.23 0.23 mgl. $mgl.$ 0.01 0.23 0.025 0.24 0.7 mgl. 0.01 0.0</td> <td>JH knalysis Temperature °C Bromide mg/L alcium mg/L mg/L</td> <td>29</td> <td>43</td> <td>45</td> <td></td> <td></td> <td></td> <td></td>	alysis Temperature 6.44 5.17 0.45 alysis Temperature 14 14 20 mile mgl. 0.04 0.056 -0.04 -0.04 mile mgl. 6.5 5.6 4.0 1.4 1.4 3.6 mile mgl. 6.5 5.6 4.0 -0.04 -0.04 -0.04 mile $mgl.$ 5.5 5.6 4.0 1.42 11.9 11.4 3.6 oride $mgl.$ 1.75 5.9 7.8 5.1 3.6 0.04 ductivity $\mugl.$ 0.72 0.023 0.204 -0.04 -0.04 mgl. 0.71 0.023 0.221 0.098 0.060 mgl. 0.71 0.72 0.027 0.023 0.23 0.23 mgl. $mgl.$ 0.01 0.23 0.025 0.24 0.7 mgl. 0.01 0.0	JH knalysis Temperature °C Bromide mg/L alcium mg/L mg/L	29	43	45				
Individe mg/L 14 14 20 Analysis Temperature °C 14 14 20 Stomide mg/L <0.04 0.056 <0.04 <0.04 <0.04 <0.04 < <td>alysis Temperature 1 14 14 14 20 < 0.04 < 0.04</td> <td>haalysis Temperature °C Bromide mg/L alcium mg/L Moride mg/L</td> <td>6.44</td> <td>5.17</td> <td>6.45</td> <td></td> <td></td> <td></td> <td></td>	alysis Temperature 1 14 14 14 20 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04	haalysis Temperature °C Bromide mg/L alcium mg/L Moride mg/L	6.44	5.17	6.45				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	bromide mg/L alcium mg/L Moride mg/L	14	14	20				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	alcium mg/L Moride mg/L	<0.04	0.056	<0.04	<0.04	<0.04	<0.04	<0.04
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	hloride mg/L	6.5	5.6	4.0	14.2	11.9	11.4	3.6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	and the add the set	4.7	5.9	7.8	5.1	3.8	5.6	5.1
. R. Phosphate mg/L 0.071 0.023 0.21 <0.004	R. Phosphate mg/L 0.071 0.023 0.021 0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <t< td=""><td>ODDUCTIVITY US/CIII</td><td>125</td><td>119</td><td></td><td></td><td></td><td>****</td><td></td></t<>	ODDUCTIVITY US/CIII	125	119				****	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$. R. Phosphate mg/L				0.21	<0.004	<0.004	<0.004
on mg/L <0.02	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	luoride mg/L	0.071	0.023	0.20	0.027	0.023	0.098	0.060
agresium mg/L 2.3 2.2 3.8 3.1 1.5 10.2 0 anganese mg/L <th< th=""> <th< th=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>on mg/L</td><td><0.02</td><td><0.02</td><td><0.02</td><td>2.0</td><td><0.02</td><td>1.8</td><td>1.3</td></th<></th<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	on mg/L	<0.02	<0.02	<0.02	2.0	<0.02	1.8	1.3
anganese mg/L <0.005	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	[agnesium mg/L	2.3	2.2	3.8	3.1	15	10.2	0.94
itrate (as N) mg/L 4.5 6.3 2.6 0.002 2.2 0.50 0 tassium mg/L 4.5 6.3 2.6 2.4 5.4 4.7 3 lica (as SiO2) mg/L 74 83 49 2.6 74 6 dium mg/L 10.4 10.0 13.5 15.0 4.7 9.9	rate (as N) mg/L 45 6.3 2.6 2.4 2.2 0.50 0.38 assiun mg/L 4.5 6.3 2.6 2.4 5.4 4.7 3.4 assiun mg/L 7.4 7.4 83 49 26 7.4 31 ium mg/L 10.4 10.0 13.5 15.0 4.7 99 4.9 phate mg/L 11.4 2.4 10.2 19.3 8.8 36 9.0	langanese mg/L	<0.05	<0.005	<0.005	0.66	<0.005	0.22	0.27
itasium mg/L 4.5 6.3 2.6 2.4 5.4 4.7 3 lica (as SiO2) mg/L 74 74 83 49 26 74 3 dium mg/L 10.4 10.0 13.5 15.0 4.7 9.9 4	assium mgL 4.5 6.3 2.6 2.4 5.4 4.7 3.4 ca (as SiO2) mgL 74 74 83 49 26 74 31 lium mgL 10.4 10.0 13.5 15.0 4.7 99 4.9 phate mgL 11.4 2.4 10.2 19.3 8.8 36 9.0	itrate (as N) mg/L				0.002	2.2	0.50	0.38
lica (as SiO2) mg/L 74 74 83 49 26 74 3 dium mg/L 10.4 10.0 13.5 15.0 4.7 9.9 4	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	otassium mg/L	4.5	6.3	2.6	2.4	5.4	4.7	3.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lium mgL 104 100 135 150 47 9.9 49 phate mgL 114 2.4 10.2 19.3 8.8 36 9.0	lica (as SiO2) mg/L	74	74	83	49	26	74	31
	phate mg/L 1 11.4 2.4 10.2 19.3 8.8 3.6 9.0	dium mg/L	10.4	10.0	13.5	15.0	4.7	9.9	4.9
UDUAUC MULL I.1.4 2.4 10.2 19.3 0.0 30 9		dphate mg/L	11.4	2.4	10.2	19.3	8.8	36	9.0
adyst Comments: The results pertain to samples as received. This document shall not be reproduced, except in full.		mples are held in storage for a period of two	elve (12) months after the rep	wrting of results.			Report Date:	30/06	5/2005
talyst Comments : The results pertain to samples as received. This document shall not be reproduced, except in full. Report Date: 30/06/2005 mples are held in storage for a period of twelve (12) months after the reporting of results. 30/06/2005	ples are held in storage for a period of twelve (12) months after the reporting of results.						Customer Ref.	10	- I Jo
adjyst Comments: The results pertain to samples as received. This document shall not be reproduced, except in full. Report Date: 30/06/2005 mples are held in storage for a period of twelve (12) months after the reporting of results. S0/06/2005 Page 1 of 1	aples are held in storage for a period of twelve (12) months after the reporting of results. Report No. Report No. 30/06/2005 Customer Ref. 1 of 1	Rehulton	K.				0		
rajst Comments : The results pertain to samples as received. This document shall not be reproduced, except in full. Report Date: 30/06/2005 mples are held in storage for a period of twelve (12) months after the reporting of results. Report Date: 30/06/2005 mples are held in storage for a period of twelve (12) months after the reporting of results. Report Date: 30/06/2005 mples are held in storage for a period of twelve (12) months after the reporting of results. Report Date: 30/06/2005 mples are held in storage for a period of twelve (12) months after the reporting of results. Report No. Page 1 of 1	pples are held in storage for a period of twelve (12) months after the reporting of results. Report Date: 30/06/2005 Report No. WAL 050513004 Customer Ref. 1 of 1	nn Noddings nalyst	Bruck Mountain, Ph.D.			This laboratory is accred The tests reported herein	ited by International Acers have been performed in ac	editation New Zealand. cordance with its terms	
major Comments : The results pertain to samples as received. This document shall not be reproduced, except in full. Report Date: 30/06/2005 amples are held in storage for a period of twelve (12) months after the reporting of results. Report No. amples are held in storage for a period of twelve (12) months after the reporting of results. Report No. amples are held in storage for a period of twelve (12) months after the reporting of results. Report No. amples are held in storage for a period of twelve (12) months after the reporting of results. Report No. amples are held in storage for a period of twelve (12) months after the reporting of results. Report No. amples are held in storage for a period of twelve (12) months after the reporting of results. Report No. amples are held in storage for a period herein have been performed in accordance with its terms 1 of 1	pples are held in storage for a period of twelve (12) months after the reporting of results. Report Date: 30/06/2005 Report No. Report N				Liaboratory	of accreditation, with the	exception of the tests marl	ked with a †	

Appendix 5.1 Laboratory result reports and methods.

GNS reports:

SCI SCI	LCLEAR ENCES	ph. 07 - 374 8211 fax. 07 - 376 0141 e.mail w.labmanager	@gns.cri.nz			IGNS Private Bag 2000 TAUPO		
			ANALYTICAL	REPORT :: GROUNI	WATERS F	BOP		
	Lab. Ref. no.	2500575	2500633	2500634	2500635	2500644	2500645	2500646
	Collection Date	15/02/2005	23/02/2005	23/02/2005	23/02/2005	24/02/2005	24/02/2005	24/02/2005
	Lab. ID	DIBBLY AT 150m	JMM PARK DEEP	JMM PARK SHALLOW	SITE 41	WHARENUI	SITE 52	POHUTUKAWA
Allealinity (as HCO3)	Clients Field ID	2F	23	19	38	29	90	26
nH		6.82	4.99	5.17	5.06	6.20	6.41	6.02
Analysis Temperature	°C	15	14	13	14	18	17	18
Sodium	mg/L	12.2	8.2	11.5	4.9	9.8	14.1	14.7
Potassium	mg/L	0.53	3.3	5.2	5.1	3.3	3.0	5.2
Calcium	mg/L	2.8	2.8	4.2	12.5	3.8	13.5	6.5
Magnesium	mg/L	1.9	2.1	1.9	1.2	2.2	3.6	3.1
Iron	mg/L	<0.02	1.3	0.034	<0.02	0.056	1.2	<0.02
Manganese	mg/L	0.008	0.34	0.014	<0.005	0.014	0.31	<0.005
Silica (as SiO2)	mg/L	68	56	76	24	69	52	73
Fluoride	mg/L	0.10	0.16	0.09	0.03	0.14	0.13	0.10
Chloride	mg/L	5.5	6.4	6.7	4.0	5.5	6.5	9.1
Bromide	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Sulphate	mg/L	1.3	3.2	0.84	8.5	10.5	3.1	13.5
Conductivity	μS/cm	63	69	80	80	65	113	109
Nitrate (as N)	mg/L	0.39	2.0		1.3	0.69	<0.03	
Phosphate (as P)	mg/L	80.0	<0.05	<0.05	<0.05	0.07	<0.05	<0.05
Analyst Comments : The r	results pertain to sam	ples as received. This do	cument shall not be rep	roduced, except in full.				
Samples are held in storag	e for a period of twel	ve (12) months after the 1	eporting of results.			Report Date:	1/67	06/2005
						Report No.	WAL	050217005
		11				Customer Ref.	520	W2057
						Page	T	01.5
0		6						

Robert Reeves CLIENT:

Wairakei Analytical Laboratory

GEOLOGICAL

Private Bag 2000 Taupo ph. 07 - 374 8211 fax. 07 - 376 0141

IGNS

This laboratory is accredited by International Accreditation New Zealand. The tests reported herein have been performed in accordance with its terms of accreditation, with the exception of the tests marked with a $^+$

(0

ce Mountan, Ph.D.

Ioya App Analyst

eochemist

101

l Laboratory	Taupo		It	iger@gns.cri.nz
Wairakei Analytica	Private Bag 2000	ph. 07 - 374 8211	fax. 07 - 376 014	c.mail w.labmana

rivate Bag 2000

CAUPO GNS

CLIENT: Robert Reeves

GEOLOGICAL	& NUCLEAR	SCIENCES
5		2

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Lab. Ref. no. 2500(47) 2500(48) 25007(16) 25007(19) 26007(19) 26007(19)	Lab. Ref. In. 25004:17 25004:18 2500710 2500719 2500719 2500719 2500730 2500719 2500730 2500719 2500730 2500710 2500730 2500730 25007305 25007305 25007305 25007305 25007305 25007305 25007305 25007305 25007305 25007305 25007305 25007305 25007305 25007305 25007305 2500730 25007305 25007305 2500730 25007305 2500730 25007305 2500730 25007305 2500730 25007305 2500730									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Collection Date 25/02/2005 2/02/2005 2/02/2005 8/02/20 8/02/2005 8/02/200	Collection Date 25002005 25002005 25002005 25002005 800,200 800,2005 800,2005 800,2005 800,2005 800,2005 800,2005 800,2005 800,2005 800,2005 800,2005 800,2005 800,2005 800,2005 800,2005 800,2005 800,200	Collection Date 25/02/2005 2.03/2005 8/04/2005		Lab. Ref. no.	2500647	2500648	2500706	2500717	2500718	2500719	2500720
Lab.ID WALLACE SITE 8 BLINLER MURPHY KIRIONA PATCHELL SIT Clients Field ID Clients Field ID 19:3 62 22 41 26 2 2 17 18 1 26 26 23 64 17 18 1 26 23 24 28 3 2 23 24 28 00 002 003 001		Lab.ID WALLACE STE8 BLINLER MURPHY KIRIONA PATCHELL STE. Clears Field ID 19.3 6.2 22 23 41 26 27 All-allinity (as HCO3) mgL 19.3 6.2 22 23 41 26 27 All-allinity (as HCO3) mgL 7.3 9.9 6.41 6.00 Ausivity Temperature *C 18 13 13 16 17 18 18 6.0 9.6 0.03 9.3 9.6 6.41 6.00 <td< th=""><th>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</th><th></th><th>Collection Date</th><th>25/02/2005</th><th>25/02/2005</th><th>2/03/2005</th><th>8/03/2005</th><th>8/03/2005</th><th>8/03/2005</th><th>8/03/200</th></td<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Collection Date	25/02/2005	25/02/2005	2/03/2005	8/03/2005	8/03/2005	8/03/2005	8/03/200
Milatinity (as HCO3) Warding (as HCO3)	Alkalinity (as HCO3) mg/L 19.3 6.2 22 41 26 27 pH 5.99 6.16 5.86 6.24 6.35 6.41 6.0 Analysis Temperature °C 18 18 13 16 17 18 18 Analysis Temperature °C 18 13 16 17 18 18 Analysis Temperature °C 18 13 16 17 18 18 Analysis Temperature °C 13 6.4 5.3 6.41 5.0 Analysis Temperature °C 18 13 2.2 19 9.9 6.4 5.9 Analysis Temperature °C 18 13 2.3 4.3 2.4 6.4 5.4 6.3 5.3 5.4 6.3 5.4 6.3 5.4 6.3 5.4 6.3 5.4 6.3 5.4 6.3 5.4 6.3 5.4 6.3 5.4 6.4	Alkalinity (a: HCO3) Contact reactor 19.3 6.2 2.2 2.1 1.1 2.6 2.7 Alkalinity (a: HCO3) mg/L 5.99 6.16 5.86 6.24 6.35 6.41 6.00 Analysis Temperature C 18 13 16 17 18 18 18 Analysis Temperature C 18 13 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 26 6.41 6.00 Solution mg/L 2.1 10.7 5.3 4.3 6.4 5.4 6.3 3.5	Alkalinity (a, HCO) matrix restrict to the construction of the co		Lab. ID Climics Field ID	WALLACE	SITE 8	BLINLER	MURPHY	KIRIONA	PATCHELL	SITE 3
Amounty (serveccy) mage 5.99 6.16 5.86 6.24 6.35 6.41 6. Analysis Temperature °C 18 13 16 17 18 1 Soldium mg/L 7.2 7.0 9.6 9.3 9.9 6.7 9 Soldium mg/L 1.2 1.0 5.3 4.3 2.2 1.8 2.4 2.8 3 Potassium mg/L 1.10 8.5 2.3 1.8 2.4 2.8 3 3 Calcium mg/L 0.012 0.035 0.035 0.032 0.03 0.005 0.03 0.03 0.03	H -3.9 -6.0	Amounty (correct) mag/L 5.99 6.16 5.86 6.24 6.35 6.41 6.00 Aublyis Temperature C 18 13 16 17 18 18 Aublyis Temperature C 18 13 16 17 18 18 Solitum mg/L 3.7 7.0 9.5 9.5 6.4 2.8 6.4 5.8 6.4 6.4 5.8 6.4 6.4 9.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.4 3.4 3.3 3.4 3.4 3.3 3.4 3.3 3.4 3.3 3.4 3.4 3.3 3.4 3.4 3.3 3.4	Answer (serve) age 5.99 6.16 5.86 6.24 6.35 6.41 6.00 Aulytis Franjerratire °C 13 16 17 18 13 3 <td>Albalinity (as HCO3)</td> <td>wa/T</td> <td>10.3</td> <td>63</td> <td>22</td> <td>22</td> <td>41</td> <td>26</td> <td>27</td>	Albalinity (as HCO3)	wa/T	10.3	63	22	22	41	26	27
m_{a} m_{g}/L 1.3 1.6 1.7 1.8 1.3 1.6 1.7 1.8 1.3 1.6 1.7 1.8 1.3 1.6 1.7 1.8 1.9 5.7 9.9 5.7 9.9 5.7 9.9 5.7 9.9 5.7 9.9 5.7 9.9 5.7 9.9 5.7 9.2 2.8 2.4 2.8 2.4 2.8 2.4 2.8 2.4 2.8 0.02 0.036 -0.02 0.02	And visits Temperature C 18 13 16 17 18 13 Soldinm mg/L 7.2 7.0 9.6 9.3 9.9 6.7 9.3 Soldinm mg/L 7.2 7.0 9.6 9.3 9.9 6.7 9.3 Potassium mg/L 2.1 10.7 5.3 4.3 5.4 5.8 6.7 9.3 Potassium mg/L 1.0 8.5 2.5 1.8 2.4 2.8 3.3 Calcium mg/L 1.0 8.5 2.5 1.7 1.9 2.4 2.8 3.3 Calcium mg/L $-\alpha 0.05$ 0.077 $-\alpha 0.05$ 0.07 $-\alpha 0.05$ $-\alpha 0.02$ $-\alpha 0.065$	Autorial framerature C 13 16 17 18 13 Solution mg/L 12 10 96 93 99 67 93 Solution mg/L 12 10 55 13 22 13 24 2.8 3.5 Potassium mg/L 10 5.3 2.3 1.3 5.4 5.4 2.8 3.5 Potassium mg/L 10 8.5 2.5 1.7 1.8 2.4 5.4 5.3 2.6 Magnesium mg/L -0.02 0.022 0.036 -0.03 0.06	Autivist Temperature 0 13 15 17 18 33 Sodium mg/L 72 70 9.6 9.3 9.9 6.7 9.3 Sodium mg/L 21 12 13 5.3 13 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.3 3.5	Hu		5.99	6.16	5.86	6.24	6.35	6.41	6.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Solution mg/L 7.2 7.0 9.6 9.3 9.9 6.7 9.3 Potassium mg/L 3.6 4.3 2.2 1.8 2.4 2.8 3.5 Calcium mg/L 1.0 5.3 4.3 2.2 1.8 2.4 5.4	Solution mg/L 7.2 7.0 9.6 9.3 9.9 6.7 9.3 Potassium mg/L 3.6 4.3 2.2 1.8 2.4 2.8 3.5 Potassium mg/L 1.01 8.5 3.5 1.7 1.8 2.4 2.8 3.5 Magnetium mg/L 1.01 8.5 3.5 1.7 1.8 1.3 2.6 Magnetic mg/L -0.02 0.022 0.035 -0.02 0.02 -0.02 0.03 0.06 0.04	Analysis Temperature	°C	18	18	13	16	17	18	18
Potassium mg/L 3.6 4.3 2.2 1.8 2.4 2.8 3 Calcium mg/L 2.1 10.7 5.3 4.3 6.4 5.4 6.6 5.4 6.6 5.4 6.6 5.4 6.6 5.4 5.4 6.6 5.4 5.4 6.6 6.6 6.6 6.6 6.1 2.8 2.8 2.8 5.4 5.4 6.6 0.02 0.036 -0.02 0.02 -0.035		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Potastiun mg/L 3.6 4.3 2.2 1.8 2.4 2.8 3.5 Calcium mg/L 2.1 10.7 5.3 4.3 6.4 5.4 5.4 6.5 Calcium mg/L 1.0 8.5 2.5 1.7 1.8 1.3 2.6 Magnesium mg/L 1.0 8.5 2.5 1.7 1.8 2.4 2.8 3.2 2.6 6.4 5.4 6.3 3.2 2.6 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04	Sodium	mg/L	7.2	7.0	9.6	9.3	9.9	6.7	9.3
Calcium mg/L 2.1 10.7 5.3 4.3 6.4 5.4 6 Magnesium mg/L 1.0 8.5 2.5 1.7 1.8 1.3 2 Iron mg/L -0.02 0.022 0.036 -0.02 0.02 -0.02 0.02 -0.02 $-0.$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Calcium ngL 2.1 10.7 5.3 4.3 6.4 5.4 6.3 Magnetium mgL 10 8.5 2.5 1.7 1.8 1.3 2.6 Iton mgL -0.02 0.022 0.036 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.01 -0.01	Calcium mg/L 2.1 10.7 5.3 4.3 6.4 5.4 6.3 Magnesium mg/L 1.0 8.5 2.5 1.7 1.8 1.3 2.6 Magnesium mg/L -0.02 0.022 0.032 0.032 0.032 0.032 0.032 0.003 0.014 <td>Potassium</td> <td>mg/L</td> <td>3.6</td> <td>4.3</td> <td>2.2</td> <td>1.8</td> <td>2.4</td> <td>2.8</td> <td>3.5</td>	Potassium	mg/L	3.6	4.3	2.2	1.8	2.4	2.8	3.5
Magnesium mg/L 1.0 8.5 2.5 1.7 1.8 1.3 2 2 Iron mg/L < 0.02 0.022 0.036 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.012 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Magnesium mg/L 1.0 8.5 2.5 1.7 1.8 1.3 2.6 Iron mg/L <0.02 0.036 0.012 0.02 0.02 0.02 0.02 0.00 0.01 0.00 0.01	Magnesium mg/L 1.0 8.5 2.5 1.7 1.8 1.3 2.6 Iron mg/L <0.02 0.025 0.036 <0.02 0.005 <0.02 0.005 <0.02 0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	Calcium	mg/L	2.1	10.7	5.3	4.3	6.4	5.4	6.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Iron mg/L < </td <td>from mg/L -0.02 0.02 0.03 -0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.00</td> <td>Magnesium</td> <td>mg/L</td> <td>1.0</td> <td>8.5</td> <td>2.5</td> <td>1.7</td> <td>1.8</td> <td>1.3</td> <td>2.6</td>	from mg/L -0.02 0.02 0.03 -0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.00	Magnesium	mg/L	1.0	8.5	2.5	1.7	1.8	1.3	2.6
Manganese mg/L <0.005 0.077 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.010 <0.010 <0.010<	Marganese mg/L <	Manganese mg/L <0.065 0.077 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.016 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <t< td=""><td>Marganese mg/L -0.005 0.077 -0.005 -0.04</td><td>Iron</td><td>mg/L</td><td><0.02</td><td>0.022</td><td>0.036</td><td><0.02</td><td>0.02</td><td><0.02</td><td>0.26</td></t<>	Marganese mg/L -0.005 0.077 -0.005 -0.04	Iron	mg/L	<0.02	0.022	0.036	<0.02	0.02	<0.02	0.26
Silica (as SiO2) mg/L 65 64 39 85 75 49 71 Fluoride mg/L 0.09 0.07 0.032 0.062 0.066 0.046 0.0 Chloride mg/L 4.5 5.1 7.9 5.9 4.8 6.1 7 Bromide mg/L -0.10 <0.10	Silica (as SlO2) mg/L 65 64 39 85 75 49 70 Fluoride mg/L 0.09 0.07 0.032 0.062 0.066 0.046 0.04 Chloride mg/L 4.5 5.1 7.9 5.9 4.8 6.1 7.1 Bromide mg/L -3.3 2.9 4.1 11.3 5.9 1.1 4.4 Sulphate mg/L 1.3 2.9 4.1 11.3 5.9 1.1 4.4 Nitrate (as N) mg/L 1.3 0.09 4.7 1.2 2.3 4.7 Phosphate (as P) mg/L 1.3 0.09 4.7 1.2 2.3 4.7 Phosphate (as P) mg/L 1.3 0.09 0.04 0.09 0.10 0.0	Silica (as SlO2) mg/L 65 64 39 85 75 49 70 Fluoride mg/L 0.09 0.07 0.032 0.066 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.045 0.045 0.045 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.045 0.045 0.045 0.045 0.04 0.014 -0.04 0.014 -0.04 0.014 -0.04 0.014 -0.04 0.014 -0.04	Silicative mg/L 65 64 39 85 75 49 70 Fluoride mg/L 0.09 0.07 0.032 0.062 0.066 0.046 0.043 Chloride mg/L 4.5 5.1 7.9 5.9 4.8 6.1 7.1 Bronide mg/L -0.10 -0.11 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 Sulphate mg/L -1.3 3.3 2.9 4.1 11.3 5.9 1.1 4.4 Conductivity $\mu S/cm$ 4.7 1.2 1.1 7.0 6.9 6.1 6.1 4.7 Phosphate (as P) mg/L -1.3 0.09 0.04 0.20 0.09 0.10 0.08 Ntrate (as P) mg/L -1.2 1.2 1.2 2.3 4.7 7 Phosphate (as P) mg/L -0.05 0.04 0.20 0.09 0.10 0.08 <tr< td=""><td>Manganese</td><td>mg/L</td><td><0.005</td><td>0.077</td><td><0.005</td><td><0.005</td><td><0.05</td><td><0.005</td><td>0.006</td></tr<>	Manganese	mg/L	<0.005	0.077	<0.005	<0.005	<0.05	<0.005	0.006
Fluoride mg/L 0.09 0.07 0.032 0.062 0.066 0.046 0.1 Chloride mg/L 4.5 5.1 7.9 5.9 4.8 6.1 7 Bromide mg/L - - - - - - - - - - - 7 7 7 7 7 7 7 7 7 - - - - - 0.10 - - 7 7 7 7 7 7 7 7 4 - - 11 4 - 6.1 4 - 4 - 4 - 11.1 7 70 6.9 6.3 11 4 - <td>Fluoride mg/L 0.09 0.07 0.032 0.062 0.066 0.046 0.04 Chloride mg/L 4.5 5.1 7.9 5.9 4.8 6.1 7.1 Bromide mg/L -3.3 2.9 4.1 11.3 5.9 4.8 6.1 7.1 Bromide mg/L -3.3 2.9 4.1 11.3 5.9 4.1 -4.1 Subbate mg/L 1.3 2.9 4.1 11.3 5.9 1.1 4.4 Phosphate (as P) mg/L 1.3 0.09 4.7 1.2 0.09 6.0 0.09 0.0 0.0<td>Fluoride mg/L 0.09 0.07 0.032 0.062 0.066 0.046 0.045</td><td>Fluoride mg/L 0.09 0.07 0.032 0.062 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.045 <th< td=""><td>Silica (as SiO2)</td><td>mg/L</td><td>65</td><td>64</td><td>39</td><td>85</td><td>75</td><td>49</td><td>70</td></th<></td></td>	Fluoride mg/L 0.09 0.07 0.032 0.062 0.066 0.046 0.04 Chloride mg/L 4.5 5.1 7.9 5.9 4.8 6.1 7.1 Bromide mg/L -3.3 2.9 4.1 11.3 5.9 4.8 6.1 7.1 Bromide mg/L -3.3 2.9 4.1 11.3 5.9 4.1 -4.1 Subbate mg/L 1.3 2.9 4.1 11.3 5.9 1.1 4.4 Phosphate (as P) mg/L 1.3 0.09 4.7 1.2 0.09 6.0 0.09 0.0 <td>Fluoride mg/L 0.09 0.07 0.032 0.062 0.066 0.046 0.045</td> <td>Fluoride mg/L 0.09 0.07 0.032 0.062 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.045 <th< td=""><td>Silica (as SiO2)</td><td>mg/L</td><td>65</td><td>64</td><td>39</td><td>85</td><td>75</td><td>49</td><td>70</td></th<></td>	Fluoride mg/L 0.09 0.07 0.032 0.062 0.066 0.046 0.045	Fluoride mg/L 0.09 0.07 0.032 0.062 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.045 <th< td=""><td>Silica (as SiO2)</td><td>mg/L</td><td>65</td><td>64</td><td>39</td><td>85</td><td>75</td><td>49</td><td>70</td></th<>	Silica (as SiO2)	mg/L	65	64	39	85	75	49	70
Chloride mg/L 4.5 5.1 7.9 5.9 4.8 6.1 7 Bronide mg/L -0.10 -0.10 -0.04 </td <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>Chloride mg/L 4.5 5.1 7.9 5.9 4.8 6.1 7.1 Bronide mg/L -0.10 -0.04 -0.04</td> <td>Chloride mg/L 4.5 5.1 7.9 5.9 4.8 6.1 7.1 Bromide mg/L -0.10 -0.04</td> <td>Fluoride</td> <td>mg/L</td> <td>0.09</td> <td>0.07</td> <td>0.032</td> <td>0.062</td> <td>0.066</td> <td>0.046</td> <td>0.043</td>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Chloride mg/L 4.5 5.1 7.9 5.9 4.8 6.1 7.1 Bronide mg/L -0.10 -0.04	Chloride mg/L 4.5 5.1 7.9 5.9 4.8 6.1 7.1 Bromide mg/L -0.10 -0.04	Fluoride	mg/L	0.09	0.07	0.032	0.062	0.066	0.046	0.043
Bromide mg/L <0.10 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.05 0.04 0.05 0.05 0.04 0.05 0.06 0.09 0.010 0.06	Bromide mg/L -0.10 -0.10 -0.04 <t< td=""><td>Bromide mg/L -0.10 -0.10 -0.04 <t< td=""><td>Bromide mg/L -0.10 -0.10 -0.04 <t< td=""><td>Chloride</td><td>mg/L</td><td>4.5</td><td>5.1</td><td>7.9</td><td>5.9</td><td>4.8</td><td>6.1</td><td>7.1</td></t<></td></t<></td></t<>	Bromide mg/L -0.10 -0.10 -0.04 <t< td=""><td>Bromide mg/L -0.10 -0.10 -0.04 <t< td=""><td>Chloride</td><td>mg/L</td><td>4.5</td><td>5.1</td><td>7.9</td><td>5.9</td><td>4.8</td><td>6.1</td><td>7.1</td></t<></td></t<>	Bromide mg/L -0.10 -0.10 -0.04 <t< td=""><td>Chloride</td><td>mg/L</td><td>4.5</td><td>5.1</td><td>7.9</td><td>5.9</td><td>4.8</td><td>6.1</td><td>7.1</td></t<>	Chloride	mg/L	4.5	5.1	7.9	5.9	4.8	6.1	7.1
Sulphate mg/L 3.3 29 4.1 11.3 5.9 1.1 4 Conductivity µS/cm 47 1.28 117 70 69 63 8 Nitrate (as N) mg/L 1.3 0.09 4.7 1.2 2.3 4 Phoenhate (as P) mg/L <0.65	Sulphate mg/L 33 29 4.1 11.3 5.9 11 4.4 Conductivity μS (cm 47 128 117 70 69 63 83 Nitrate (as N) $m g/L$ 1.3 0.09 4.7 1.2 1.2 2.3 4.7 Phosphate (as P) $m g/L$ -0.05 -0.05 0.04 0.20 0.09 0.10 0.0	Sulphate mg/L 3.3 29 4.1 11.3 5.9 1.1 4.4 Conductivity µS/cm 47 128 117 70 69 63 83 Nitrate (as N) mg/L 1.3 0.09 4.7 1.2 1.2 2.3 4.7 Phosphate (as P) mg/L -0.65 0.04 0.20 0.09 0.10 0.08 Andyst Comments: The results pertain to samples as received. This document shall not be reproduced, except in full. Analyst. 0.09 0.10 0.09 0.10 0.08	Sulphate mg/L 3.3 2.9 4.1 11.3 5.9 1.1 4.4 Conductivity µS/cm 47 128 117 70 69 63 83 Ntrate (as N) mg/L 1.3 0.09 4.7 1.2 1.2 2.3 4.7 Phosphate (as P) mg/L 0.05 0.04 0.20 0.09 0.10 0.08 Andyst (as P) mg/L -0.65 0.04 0.20 0.09 0.10 0.08 Andyst Comments : The results pertain to samples as received. This document shall not be reproduced, except in full. Report Date. 29/06/2005	Bromide	mg/L	<0.10	<0.10	<0.04	<0.04	<0.04	<0.04	<0.04
Conductivity μS/cm 47 128 117 70 69 63 8 Nitrate (as N) mg/L 1.3 0.09 4.7 1.2 1.2 2.3 4 Phocohate (as P) mg/L <0.05	Conductivity µS/cm 47 128 117 70 69 63 83 Nitrate (as N) mg/L 1.3 0.09 4.7 1.2 1.2 2.3 4.7 Phosphate (as P) mg/L <0.05	Conductivity µS/cm 47 128 117 70 69 63 63 83 Nitrate (as N) mg/L 1.3 0.09 4.7 1.2 1.2 2.3 4.7 Phosphate (as P) mg/L <0.05	Conductivity µS/cm 47 128 117 70 69 63 83 Nitrate (as N) mg/L 1.3 0.09 4.7 1.2 1.2 2.3 4.7 Phosphate (as P) mg/L 0.05 0.09 0.09 0.09 0.09 0.09 0.09 0.08 Andyst Comments: mg/L -0.05 0.04 0.20 0.09 0.10 0.08 Andyst Comments: The results pertain to samples as received. This document shall not be reproduced, except in full. Report Date: 23/106/2005 23/06/2005	Sulphate	mg/L	3.3	29	4.1	11.3	5.9	1.1	4.4
Nitrate (as N) mg/L 1.3 0.09 4.7 1.2 1.2 2.3 4 Phycorbate (as P) m_0/L <0.05 0.04 0.20 0.09 0.10 0.10 0.10	Nitrate (as N) mg/L 1.3 0.09 4.7 1.2 1.2 2.3 4.7 Phosphate (as P) mg/L 0.09 0.10 0.0	Nitrate (as N) mg/L 1.3 0.09 4.7 1.2 1.2 2.3 4.7 Phosphate (as P) mg/L <0.05	Nitrate (as N) mg/L 1.3 0.09 4.7 1.2 1.2 2.3 4.7 Phosphate (as P) mg/L <0.05	Conductivity	µS/cm	47	128	117	70	69	63	83
$\frac{\text{Phychhate}(s, \mathbf{P})}{\text{Phychate}(s, \mathbf{P})} = \frac{m/L}{m/L} = \frac{<0.05}{<0.05} = \frac{0.04}{0.04} = 0.20 = 0.09 = 0.10 = 0.010 = 0.0000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.00000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.00000 = 0.00000 = 0.0000 = 0.0000 = 0.00000 = 0.00000 = 0.00000 = 0.0000 = 0.00000 = 0.00000 = 0.000000 = 0.00000 = 0.00000000$	Phosphate (as P) mg/L <0.05 <0.05 0.04 0.20 0.09 0.10 0.03	Phosphate (as P) mg/L <0.05 <0.05 0.04 0.20 0.09 0.10 0.08 Andry Comments : The results pertain to samples as received. This document shall not be reproduced, except in full.	Phosphate (as P) mg/L <0.05 <0.05 0.04 0.20 0.09 0.10 0.08 Analyst Comments : The results pertain to samples as received. This document shall not be reproduced, except in full. Report Date: 29/06/2005	Nitrate (as N)	mg/L	1.3	0.09	4.7	1.2	1.2	2.3	4.7
		Analyst Comments : The results pertain to samples as received. This document shall not be reproduced, except in full.	Analyst Comments : The results pertain to samples as received. This document shall not be reproduced, except in full. Report Date: 29/06/2005	Phosphate (as P)	mg/L	<0.05	<0.05	0.04	0.20	0.09	0.10	0.08
Analyst Comments: The results pertain to samples as received. This document shall not be reproduced, except in full. Report Date: 29/06/2005 Samples are held in storage for a period of twelve (12) months after the reporting of results. Report Date: 29/06/2005 Note: The Bromide detection limits vary due to the fact that they were analysed on two different columns Report No. WAL 050217005	Samples are held in storage for a period of twelve (12) months after the reporting of results. Samples are held in storage for a period of twelve (12) months after the reporting of results. 29/06/2005 Note: The Bromide detection limits vary due to the fact that they preve analysed on two different columns Report No. WAL 050217005	Note: The Bromide detection limits vary due to the fact that they were analysed on two different columns Report No. WAL 050217005								Customer Ref.	520W	2057
Analyst Comments: The results pertain to samples as received. This document shall not be reproduced, except in full. Samples are held in storage for a period of twelve (12) months after the reporting of results. Note: The Bromide detection limits vary due to the fact that they were analysed on two different columns Customer Ref. 29/06/2005 Customer Ref.	Samples are held in storage for a period of twelve (12) months after the reporting of results. Report Date: 29/06/2005 Note: The Bromide detection limits vary due to the fact that they were analysed on two different columns Report No. State: The Bromide detection limits vary due to the fact that they were analysed on two different columns Customer Ref	Note: The Bromide detection limits vary due to the fact that they were analysed on two different columns Report No. WAL 050217005 Customer Ref. 520W2057	Customer Ref. 520W2057			(Page	2 of	3

This laboratory is accredited by International Accreditation New Zealand. The tests reported herein have been performed in accordance with its terms of accreditation, with the exception of the tests marked with a \dagger

0

Mountarin. PhD.

Moya Appleby Analyst

chemist

Īř ٦

© Institute of Geological & Nuclear Sciences Ltd

e.mail w.labmanager@gns.cri.nz Wairakei Analytical Laboratory Private Bag 2000 Taupo ph. 07 - 374 8211 fax. 07 - 376 0141

CLIENI:	
Robert Reeves	
IGNS	
Private Bag 2000	
TAUPO	

ANALYTICAL REPORT :: GROUNDWATERS EBOP

	Lab. Ref. no. Collection Date	2500822 21/03/2005			
	Lab. ID	BRITTON			
	Clients Field ID				
Alkalinity (as HCO3)	mg/L	43			
Н		6.20			
unalysis Temperature	°C	24			
odium	mg/L	13.1			
otassium	mg/L	4.5			
alcium	mg/L	9.1			
fagnesium	mg/L	2.6			
ron	mg/L	<0.02			
fanganese	mg/L	<0.005			
ilica (as SiO2)	mg/L	73			
luoride	mg/L	0.10			
hloride	mg/L	6.8			
iromide	mg/L	<0.04			
ulphate	mg/L	15.8			
onductivity	μS/cm	109			
litrate (as N)	mg/L	2.3			
hosphate (as P)	mg/L	0.08			
nalyst Comments : The	results pertain to sample	s as received. This document shall not be repro	duced, except in full.		
amples are held in storag	ge for a period of twelve	(12) months after the reporting of results.	Report Date:	29/06/2005	
			Report No.	WAL 050217005	
		-	Customer Ref.	520W2057	
		(Page	3 of 3	
					1

103

The tests reported herein have been performed in accordance with its terms This laboratory is accredited by International Accreditation New Zealand.

 \odot

Mountain.Ph chemist

Moya Appleby Analyst

of accreditation, with the exception of the tests marked with a \dagger

WAIRAKEI ANALYTICAL LABORATORY Private Bag 2000, Taupo ph. 07 - 3748211fax. 07 - 376 0141 e.mail <w.labmanager@gns.cri.nz>

Appendix to REPORT WAL 050217005

Summary of Methods Used and Detection Limits

The following table gives a brief description of the methods used to conduct the analyses on this report. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis

PARAMETER	METHOD USED	DETECTION LIMIT
Alkalinity (as HCO ₃)	Auto titration method APHA 2320 - B 20th Edition 1998	5 mg/L
Bromide	Ion Chromatography APHA 4110-B 20th Edition 1998	0.1 mg/L
Calcium	ICP-OES APHA 3120-B 20th Edition 1998	0.05 mg/L
Chloride	Ion Chromatography APHA 4110-B 20th Edition 1998	0.04 mg/L
Conductivity	Conductivity Meter APHA 2510 B 20 th Edition 1998	1.0 µS/cm
Fluoride	Ion Selective Electrode APHA 4500-F C 20th Edition 1998	0.1 mg/L
Iron	ICP-OES APHA 3120-B 20th Edition 1998	0.02 mg/L
Magnesium	ICP-OES APHA 3120-B 20th Edition 1998	0.01 mg/L
Manganese	ICP-OES APHA 3120-B 20th Edition 1998	0.005 mg/L
Nitrate Nitrogen (as N)	Ion Chromatography APHA 4110-B 20th Edition 1998	0.03 mg/l
pH	Electrometric Method APHA 4500-H+ B 20th Edition 1998	1
Phosphorus (sol. reactive)	Ion Chromatography APHA 4110-B 20th Edition 1998	0.05 mg/l
Potassium	Flame Emission Spectrometry APHA 3500-K B 20th Edition 1998	0.04 mg/L
Silica (as SiO ₂)	ICP-OES APHA 3120-B 20th Edition 1998	0.5 mg/L
Sodium	Flame Emission Spectrometry APHA 3500-Na B 20th Edition 1998	0.04 mg/L
Sulphate	Ion Chromatography APHA 4110-B 20th Edition 1998	0.10 mg/L
Sulphate	APHA 4110-B 20th Edition 1998	0.10 mg/L

If you have any queries with regard to the above please contact the Laboratory Manager, Dr B Mountain, ph. 07-3748211, mob. 027-220 9647, Email: b.mountain@gns.cri.nz

Wairakei Research Centre, State Highway I, Wairakei, Private Bag 2000, Taupo, New Zealand, Telephone: +64-7-374 8211, Facsimile: +64-7-374 8199 A Crown Research Institute Page -1 of I

TO Rob Reeves IGNS Private Bag 2000 TAUPO Wairakei Analytical Laboratory Private Bag 2000 Taupo ph. 07 - 374 8211 fax. 07 - 376 0141 e.mail <w.labmanager@gns.cri.nz>

Report Date:	29/06/2005
Report No.	WAL 041214001
Customer Ref.	520W2057
Page	1 of 1

ANALYTICAL REPORT :: GROUNDWATERS

	Lab. Ref. no.	2402600	
	Collection Date	14/12/2004	
	Lab. ID		
	Clients Field ID	DIBLEY 80m	
Alkalinity (as HCO3)	mg/L	24	
pH		5.98	
Analysis Temperature	°C	14	
Ammonium (as N) †	mg/L	0.01	
Bromide	mg/L	<0.10	
Calcium	mg/L	4.2	
Chloride	mg/L	6.6	
Conductivity	μS/cm	98	
Fluoride	mg/L	<0.05	
Iron	mg/L	<0.02	
Magnesium	mg/L	2.0	
Manganese	mg/L	<0.005	
Nitrate (as N)	mg/L	2.22	
Nitrite †	mg/L	< 0.002	
Nitrate N+ Nitrite N(TON)†	mg/L	2.22	
Phosphate (as P) †	mg/L	0.05	
Potassium	mg/L	2.2	
Silica (as SiO2)	mg/L	40	
Sodium	mg/L	8.5	
Sulphate	mg/L	4.7	
Total Kjeldahl Nitrogen †	mg/L	0.2	
	mg/L	0.04	

Analyst Comments : The results pertain to samples as received. This document shall not be reproduced, except in full. Samples are held in storage for a period of twelve (12) months after the reporting of results.

Moya Appleby Analyst

Bruce Mountain, Ph.D. Geochemist

This laboratory is accredited by International Accreditation New Zealand. The tests reported herein have been performed in accordance with its terms of accreditation, with the exception of the tests marked with a †

WAIRAKEI ANALYTICAL LABORATORY Private Bag 2000, Taupo ph. 07 - 3748211fax. 07 - 376 0141 e.mail <w.labmanager@gns.cri.nz>

Appendix to REPORT WAL 041214001

Summary of Methods Used and Detection Limits

The following table gives a brief description of the methods used to conduct the analyses on this report. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis

PARAMETER	METHOD USED	DETECTION LIMIT		
Alkalinity (as HCO ₃)	Auto titration method APHA 2320 - B 20th Edition 1998	5 mg/L		
Ammonium Nitrogen (as N)	Automated Phenate Method APHA 4500-NH3 G 20th Edition 1998	0.01 mg/l		
Bromide	Ion Chromatography APHA 4110-B 20th Edition 1998	0.1 mg/L		
Calcium	ICP-OES APHA 3120-B 20th Edition 1998	0.05 mg/L		
Chloride	Ion Chromatography APHA 4110-B 20th Edition 1998	0.04 mg/L		
Conductivity	Conductivity Meter APHA 2510 B 20 th Edition 1998	1.0 μS/cm		
Fluoride	Ion Chromatography APHA 4110-B 20th Edition 1998	0.03 mg/L		
Iron	ICP-OES APHA 3120-B 20th Edition 1998	0.02 mg/L		
Magnesium	ICP-OES APHA 3120-B 20th Edition 1998	0.01 mg/L		
Manganese	ICP-OES APHA 3120-B 20th Edition 1998	0.005 mg/L		
Nitrate Nitrogen (as N)	Ion Chromatography APHA 4110-B 20th Edition 1998	0.03 mg/l		
Nitrite Nitrogen (as N)	Ion Chromatography APHA 4110-BI 20th Edition 1998	0.02 mg/l		
Nitrogen - Total Kjeldahl [TKN]	Kjel dig + phenol/hypochlorite colourimetry APHA 4500-N-org D (mod.) 20th Ed. 1998	0.10 mg/L		
pH	Electrometric Method APHA 4500-H+ B 20th Edition 1998	1		
Phosphorus (sol. reactive)	Ion Chromatography APHA 4110-B 20th Edition 1998	0.05 mg/l		
Phosphorus – Total [TP]	Acid pers dig + molybdate colourimetry APHA 4500-P H 20th Edition 1998	0.004 mg/L		
Potassium	Flame Emission Spectrometry APHA 3500-K B 20th Edition 1998	0.04 mg/L		
Silica (as SiO ₂)	ICP-OES APHA 3120-B 20th Edition 1998	0.5 mg/L		
Sodium	Flame Emission Spectrometry APHA 3500-Na B 20th Edition 1998	0.04 mg/L		
Sulphate	Ion Chromatography APHA 4110-B 20th Edition 1998	0.10 mg/L		

Wairakei Research Centre, State Highway I, Wairakei, Private Bag 2000, Taupo, New Zealand, Telephone: +64-7-374 8211, Facsimile: +64-7-374 8199 A Crown Research Institute Page -1 of 1

Hill Laboratory reports:

Sample Name		13 2/03/05	
Lab No		371037/1	
Total Ammoniacal-N	(g.m-3)	< 0.01	
Total Kjeldahl Nitrogen (TKN)	(g.m-3)	< 0.1	
Nitrate-N + Nitrite-N (TON)	(g.m-3)	4.57	
Nitrate-N	(g.m-3)	4.56	
Nitrite-N	(g.m-3)	0.009	
Dissolved Reactive Phosphoru	s (g.m-3)	0.033	
Total Phosphorus	(g.m-3)	0.044	

Sample Containers

The following table shows the sample containers that were associated with this job.

Container Description	Container Size (mL)	Number of Containers
Polyethylene (100 mL), unpreserved	100	1
Sulphuric Preserved (250 mL)	250	1
Filtered Unpreserved (100 mL)	100	1

Details of sample bottle preparation procedures are available upon request.

This Laboratory is accredited by International Accreditation New Zealand (previously known as TELARC). The tests reported herein have been performed in accordance with its terms of accreditation, with the exception of tests marked *, which are not accredited.

This report may not be reproduced, except in full, without the written consent of the signatory.

Client:Inst Geological & Nuclear Sciences	Laboratory No:371037	Page:2 of 2

Summary of Methods Used and Detection Limits The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Parameter	Method Used	Detection Limit	
Total Ammoniacal-N	Phenol/hypochlorite colorimetry. Flow injection analyser. (NH4-N = NH4*-N + NH3-N) APHA 4500-NH ₃ H 20 th ed. 1998	0.01 g.m-3	
Total Kjeldahl digestion	Sulphuric acid digestion with copper sulphate catalyst. APHA 4500- $N_{\text{erg}}D.$ (modified) 20^{m} ed. 1998	N/A	
Total Kjeldahl Nitrogen (TKN)	Kjeldahl digestion, phenol/hypochlorite colorimetry (Flow Injection Analysis) APHA 4500-Norg D. (modified) 20 th ed. 1998	0.1 g.m-3	
Nitrate-N + Nitrite-N (TON)	Total oxidised nitrogen. Automated cadmium reduction, Flow injection analyser. APHA 4500-NO ₃ ⁻¹ (Proposed) 20 th ed. 1998	0.002 g.m-3	
Nitrate-N	Calculation: (Nitrate-N + Nitrite-N) - Nitrite-N.	0.002 g.m-3	
Nitrite-N	Automated Azo dye colorimetry, Flow injection analyser. APHA 4500-NO3 I (Proposed) 20 th ed. 1998	0.002 g.m-3	
Dissolved Reactive Phosphorus	Molybdenum blue colorimetry. Flow injection analyser. APHA 4500- P G (Proposed) 20 th ed. 1998	0.004 g.m-3	
Total Phosphorus	Acid persulphate digestion, ascorbic acid colorimetry, Discrete Analyser. APHA 4500-P E (modified from manual analysis). 20 th ed. 1998	0.004 g.m-3	

Analyst's Comments:

These samples were collected by yourselves and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the submitter.

This report must not be reproduced, except in full, without the written consent of the signatory.

Peter Robinson, MSc(Hons), PhD FNZIC Environmental Division Manager

Terry Cooney, MSc(Hons), PhD MNZIC General Manager

R J Hill Laboratories Ltd -

-

Hill Laboratories

Address: 1 Clyde Street, Private Bag 3205, Hamilton, New Zealand

Telephone: +64 (7) 858-2000 Facsimile: *****+64 (7) 858-2001

Email: mail@hill-labs.co.nz Internet:

Client: Inst Geological & Nuclear Sciences Address: Wairakei Research Centre, Private Bag 2000 TAUPO Contact: Bruce Mountain

Laboratory No: 369164 Date Registered: 21/02/2005 Date Completed: 23/03/2005 Page Number: 1 of 2

The results for the analyses you requested are as follows:

Sample Type: Water.

Sample Name		2 15/02/05	
Lab No		369164/1	
Total Ammoniacal-N	(g.m-3)	< 0.01	
Total Kjeldahl Nitrogen (TKN)	(g.m-3)	0.2	
Nitrate-N + Nitrite-N (TON)	(g.m-3)	0.405	
Nitrate-N	(g.m-3)	0.404	
Nitrite-N	(g.m-3)	< 0.002	
Dissolved Reactive Phosphoru	s (g.m-3)	0.060	
Total Phosphorus	(g.m-3)	0.064	

Sample Containers

The following table shows the sample containers that were associated with this job.

Container Description	Container Size (mL)	Number of Containers	
Sulphuric Preserved (250 mL)	250	1	
Polyethylene (100 mL), unpreserved	100	1	
Filtered Unpreserved (100 mL)	100	1	

of samp

This Laboratory is accredited by International Accreditation New Zealand (previously known as TELARC). The tests reported herein have been performed in accordance with its terms of accreditation, with the exception of tests marked *, which are not accredited. This report may not be reproduced, except in full, without the written consent of the signatory.

Client:Inst Geological & Nuclear Sciences	Laboratory No:369164
---	----------------------

Summary of Methods Used and Detection Limits

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Parameter	Method Used	Detection Limit	
Total Ammoniacal-N	Phenol/hypochlorite colorimetry. Flow injection analyser. (NH4-N = NH4*-N + NH3-N) APHA 4500-NH ₃ H 20 th ed. 1998	0.01 g.m-3	
Total Kjeldahl digestion	Sulphuric acid digestion with copper sulphate catalyst. APHA 4500- Nerg D. (modified) 20 th ed. 1998	N/A	
Total Kjeldahl Nitrogen (TKN)	Kjeldahl digestion, phenol/hypochlorite colorimetry (Flow Injection Analysis) APHA 4500-Norg D. (modified) 20 th ed. 1998	0.1 g.m-3	
Nitrate-N + Nitrite-N (TON)	Total oxidised nitrogen. Automated cadmium reduction, Flow injection analyser. APHA 4500-NO ₃ I (Proposed) 20 th ed. 1998	0.002 g.m-3	
Nitrate-N	Calculation: (Nitrate-N + Nitrite-N) - Nitrite-N.	0.002 g.m-3	
Nitrite-N	Automated Azo dye colorimetry, Flow injection analyser. APHA 4500-NO3 ⁻¹ (Proposed) 20 th ed. 1998	0.002 g.m-3	
Dissolved Reactive Phosphorus	Molybdenum blue colorimetry. Flow injection analyser. APHA 4500- P G (Proposed) 20 th ed. 1998	0.004 g.m-3	
Total Phosphorus	Acid persulphate digestion, ascorbic acid colorimetry, Discrete Analyser. APHA 4500-P E (modified from manual analysis). 20 th ed. 1998	0.004 g.m-3	

Analyst's Comments:

These samples were collected by yourselves and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the submitter.

This report must not be reproduced, except in full, without the written consent of the signatory.

Peter Robinson, MSc(Hons), PhD FNZIC Environmental Division Manager

Terry Cooney, MSc(Hons), PhD MNZIC General Manager

- R J Hill Laboratories Ltd -

Page:2 of 2

Hill Laboratories

Address: 1 Clyde Street, Private Bag 3205, Mamilton, New Zealand Telephone: +64 (7) 858-2000 Facsimile: +64 (7) 858-2001

Email: mail@hill-labs.co.nz Internet: www.hill-labs.co.nz

Client:	Inst Geological & Nuclear Scien	nces Laboratory No:	371373
Address:	Wairakei Research Centre, Priv	vate Bag 2000Date Registered:	10/03/2005
	TAUPO	Date Completed:	31/03/2005
Contact:	Rob Reeves	Page Number:	1 of 2

Client's Reference: LR GW Study

The results for the analyses you requested are as follows:

Sample Type: Water,

Sample Name	Lab No	Total Ammoniacal-N (g.m-3)	Total Kjeldahl Nitrogen (TKN) (g.m-3)	Nitrate-N + Nitrite-N (TON) (g.m-3)	Nitrate-N (g.m-3)	Nitrite-N (g.m-3)
GNS 14 8/03/05	371373/1	< 0.01	< 0.1	1.12	1.12	< 0.002
GNS 15 8/03/05	371373/2	< 0.01	< 0.1	1.16	1.16	< 0.002
GNS 16 8/03/05	371373/3	< 0.01	< 0.1	2.16	2.16	< 0.002
GNS 17 8/03/05	371373/4	< 0.01	0.2	4.51	4.50	0.004
GNS 18 8/03/05	371373/5	< 0.01	0.8	0.003	< 0.002	< 0.002
GNS 19 8/03/05	371373/6	22.0	24.4	0.006	0.004	< 0.002

Sample Name	Lab No	Dissolved Reactive Phosphorus	Total Phosphorus
	in a state of	(g.m-3)	(g.m-3)
GNS 14 8/03/05	371373/1	0.207	0.221
GNS 15 8/03/05	371373/2	0.083	0.085
GNS 16 8/03/05	371373/3	0.039	0.040
GNS 17 8/03/05	371373/4	0.076	0.157
GNS 18 8/03/05	371373/5	0.021	0.237
GNS 19 8/03/05	371373/6	3.18	3.42

Sample Containers

The following table shows the sample containers that were associated with this job.

Container Description	Container Size (mL)	Number of Containers
Polyethylene (100 mL), unpreserved	100	6
Filtered Unpreserved (100 mL)	100	6
Sulphuric Preserved (250 mL)	250	6

Details of sample bottle preparation procedures are available upon request.

This Laboratory is accredited by International Accreditation New Zealand (previously known as TELARC). The tests reported herein have been performed in accordance with its terms of accreditation, with the exception of tests marked *, which are not accredited. This report may not be reproduced, except in full, without the written consent of the signatory.

Client:Inst Geological & Nuclear Sciences	Laboratory No:371373
---	----------------------

Page:2 of 2

Summary of Methods Used and Detection Limits

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Substance Type: Water

Parameter	Method Used	Detection Limit
Sample filtration for general testing	Sample filtration through 0.45µm membrane filter.	N/A
Total Ammoniacal-N	Phenol/hypochlorite colorimetry. Flow injection analyser. (NH4-N = NH4*-N + NH3-N) APHA 4500-NH ₃ H 20^{th} ed. 1998	0.01 g.m-3
Total Kjeldahl digestion	Sulphuric acid digestion with copper sulphate catalyst. APHA 4500- N_{erg} D. (modified) 20 th ed. 1998	N/A
Total Kjeldahl Nitrogen (TKN)	Kjeldahl digestion, phenol/hypochlorite colorimetry (Flow Injection Analysis) APHA 4500-Norg D. (modified) 20th ed. 1998	0.1 g.m-3
Nitrate-N + Nitrite-N (TON)	Total oxidised nitrogen. Automated cadmium reduction, Flow injection analyser. APHA 4500-NO3 I (Proposed) 20th ed. 1998	0.002 g.m-3
Nitrate-N	Calculation: (Nitrate-N + Nitrite-N) - Nitrite-N.	0.002 g.m-3
Nitrite-N	Automated Azo dye colorimetry, Flow injection analyser. APHA 4500-NO ₃ I (Proposed) 20 th ed. 1998	0.002 g.m-3
Dissolved Reactive Phosphorus	Molybdenum blue colorimetry. Flow injection analyser. APHA 4500- P G (Proposed) 20 th ed. 1998	0.004 g.m-3
Total Phosphorus	Acid persulphate digestion, ascorbic acid colorimetry, Discrete Analyser. APHA 4500-P E (modified from manual analysis). 20 th ed. 1998	0.004 g.m-3

Analyst's Comments:

These samples were collected by yourselves and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the submitter.

This report must not be reproduced, except in full, without the written consent of the signatory.

U

Peter Robinson, MSc(Hons), PhD FNZIC Environmental Division Manager

Terry Cooney, MSc(Hons), PhD MNZIC General Manager

- R J Hill Laboratories Ltd -

Hill Laboratories

Address: 1 Clyde Street, Private Bag 3205, Hamilton, New Zealand

Telephone: +64 (7) 858-2000 Facsimile: * +64 (7) 858-2001

Email: mail@hill-labs.co.nz Internet: www.hill-labs.co.nz

Client: Inst Geological & Nuclear Sciences Address: Wairakei Research Centre, Private Bag 2000 TAUPO Contact: Rob Reeves

Laboratory No: 372724 Date Registered: 22/03/2005 Date Completed: 7/04/2005 Page Number: 1 of 2

Client's Reference: LR GW Study

The results for the analyses you requested are as follows:

Sample Type: Water.

Sample Name		GAS - EBOP 20 21/03/05	
Lab No		372724/1	
Total Ammoniacal-N	(g.m-3)	< 0.01	
Total Kjeldahl Nitrogen (TKN)	(g.m-3)	< 0.1	
Nitrate-N + Nitrite-N (TON)	(g.m-3)	2.36	
Nitrate-N	(g.m-3)	2.36	
Nitrite-N	(g.m-3)	< 0.002	
Dissolved Reactive Phosphoru	s (g.m-3)	0.083 #	
Total Phosphorus	(g.m-3)	0.080 #	

See Note 1

Sample Containers

The following table shows the sample containers that were associated with this job. Container Size (mL) Number of Containers **Container Description** Sulphuric Preserved (250 mL) 250 1 1

100 Polyethylene (100 mL), unpreserved 1 Filtered Unpreserved (100 mL) 100

Details of sample bottle preparation procedures are available upon request.

This Laboratory is accredited by International Accreditation New Zealand (previously known as TELARC). The tests reported herein have been performed in accordance with its terms of accreditation, with the exception of tests marked *, which are not accredited. This report may not be reproduced, except in full, without the written consent of the signatory.

Client:Inst Geological & Nuclear Sciences	Laboratory No:372724	Page:2 of 2
---	----------------------	-------------

Summary of Methods Used and Detection Limits The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Substance Type: Water

Parameter	rameter Method Used	
Total Ammoniacal-N	Phenol/hypochlorite colorimetry. Flow injection analyser. (NH4-N = 0. NH4*-N + NH3-N) APHA 4500-NH₃ H 20 th ed. 1998	
Total Kjeldahl digestion	Sulphuric acid digestion with copper sulphate catalyst. APHA 4500- $N_{\text{org}}D.$ (modified) 20^{th} ed. 1998	N/A
Total Kjeldahl Nitrogen (TKN)	Kjeldahl digestion, phenol/hypochlorite colorimetry (Flow Injection Analysis) APHA 4500-Norg D. (modified) 20 th ed. 1998	0.1 g.m-3
Nitrate-N + Nitrite-N (TON)	Total oxidised nitrogen. Automated cadmium reduction, Flow injection analyser. APHA 4500-NO ₃ I (Proposed) 20 th ed. 1998	0.002 g.m-3
Nitrate-N	Calculation: (Nitrate-N + Nitrite-N) - Nitrite-N.	0.002 g.m-3
Nitrite-N	Automated Azo dye colorimetry, Flow injection analyser. APHA $4500\text{-}NO_3^{-1}$ (Proposed) 20^{th} ed. 1998	0.002 g.m-3
Dissolved Reactive Phosphorus	Molybdenum blue colorimetry. Flow injection analyser. APHA 4500- P G (Proposed) 20 th ed. 1998	0.004 g.m-3
Total Phosphorus	Acid persulphate digestion, ascorbic acid colorimetry, Discrete Analyser. APHA 4500-P E (modified from manual analysis). 20 th ed. 1998	0.004 g.m-3

Analyst's Comments:

These samples were collected by yourselves and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the submitter.

This report must not be reproduced, except in full, without the written consent of the signatory.

Note 1: It has been noted that the results for "Dissolved Reactive Phosphorus" were greater than those for "Total Phosphorus", but within the analytical variation of these methods.

Peter Robinson, MSc(Hons), PhD FNZIC Environmental Division Manager

Terry Cooney, MSc(Hons) PhD MNZIC General Manager

- R J Hill Laboratories Ltd -

Hill Laboratories

Address: 1 Clyde Street, Private Bag 3205, Hamilton, New Zealand Telephone: +64 (7) 858-2000 Facsimile: +64 (7) 858-2001 Email: mail@hill-labs.co.nz Internet: www.hill-labs.co.nz

Laboratory No: 378020 Date Registered: 13/05/2005 Date Completed: 27/05/2005 Page Number: 1 of 2

Client's Reference: LR GW Study

Address: Wairakei Research Centre,

TAUPO

Contact: Rob Reeves

Private Bag 2000

The results for the analyses you requested are as follows:

Client: Inst Geological & Nuclear Sciences

Sample Type: Water,

Sample Name	Lab No	Total Ammoniacal-N (g.m-3)	Total Kjeldahl Nitrogen (TKN) (g.m-3)	Nitrate-N + Nitrite-N (TON) (g.m-3)	Nitrate-N (g.m-3)	Nitrite-N (g.m-3)
8 Airport Spring	378020/1	< 0.01	< 0.1	3.62	3.62	< 0.002
18 Morea Spring	378020/2	< 0.01	< 0.1	1.79	1.79	< 0.002
Hamurana Main Spring 10/05/05	378020/3	< 0.01	< 0.1	0.699	0.697	< 0.002
31 09/05/05	378020/4	< 0.01	< 0.1	1.26	1.25	< 0.002
32 09/05/05	378020/5	< 0.01	< 0.1	0.658	0.656	0.002
33 09/05/05	378020/6	< 0.01	< 0.1	0.669	0.667	< 0.002
34 09/05/05	378020/7	< 0.01	< 0.1	0.667	0.666	< 0.002
35 09/05/05	378020/8	< 0.01	< 0.1	1.45	1.45	< 0.002

Sample Name	Lab No	Dissolved Reactive Phosphorus	Total Phosphorus
		(g.m-3)	(g.m-3)
8 Airport Spring	378020/1	0.093	0.099
18 Morea Spring	378020/2	0.053	0.057
Hamurana Main Spring 10/05/05	378020/3	0.079	0.085
31 09/05/05	378020/4	0.066	0.069
32 09/05/05	378020/5	0.082	0.085
33 09/05/05	378020/6	0.085	0.087
34 09/05/05	378020/7	0.093	0.096
35 09/05/05	378020/8	0.066	0.068

Sample Containers

The following table shows the sample containers that were associated with this job.

Container Description	Container Size (mL)	Number of Containers
Sulphuric Preserved (250 mL)	250	8
Polyethylene (100 mL), unpreserved	100	8
Filtered Unpreserved (100 mL)	100	8

Details of sample bottle preparation procedures are available upon request.

This Laboratory is accredited by International Accreditation New Zealand (previously known as TELARC). The tests reported herein have been performed in accordance with its terms of accreditation, with the exception of tests marked *, which are not accredited. This report may not be reproduced, except in full, without the written consent of the signatory.

Client:Inst Geological & Nuclear Sciences	Laboratory No:378020	Page:2 of 2
---	----------------------	-------------

Summary of Methods Used and Detection Limits The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Parameter	Method Used	Detection Limit
Total Ammoniacal-N	Filtered sample. Phenol/hypochlorite colorimetry. Discrete Analyser. (NH4-N = NH4*-N + NH3-N) APHA 4500-NH ₃ F (modified from manual analysis) 20 th ed. 1998	0.01 g.m-3
Total Kjeldahl digestion	Sulphuric acid digestion with copper sulphate catalyst. APHA 4500- $N_{\rm org}$ D. (modified) 20^{th} ed. 1998	N/A
Total Kjeldahl Nitrogen (TKN)	Kjeldahl digestion, phenol/hypochlorite colorimetry (Discrete Analysis). APHA 4500-N _{org} C. (modified) 4500-NH ₃ F (modified) 20 ^m ed. 1998	0.1 g.m-3
Nitrate-N + Nitrite-N (TON)	Total oxidised nitrogen. Automated cadmium reduction, Flow injection analyser. APHA 4500-NO ₃ ⁻¹ (Proposed) 20 th ed. 1998	0.002 g.m-3
Nitrate-N	Calculation: (Nitrate-N + Nitrite-N) - Nitrite-N.	0.002 g.m-3
Nitrite-N	Automated Azo dye colorimetry, Flow injection analyser. APHA 4500-NO3 I (Proposed) 20 th ed. 1998	0.002 g.m-3
Dissolved Reactive Phosphorus	Filtered sample. Molybdenum blue colorimetry. Discrete Analyser. APHA 4500-P E (modified from manual analysis) 20 th ed. 1998	0.004 g.m-3
Total Phosphorus	Acid persulphate digestion, ascorbic acid colorimetry, Discrete Analyser. APHA 4500-P E (modified from manual analysis). 20 th ed. 1998	0.004 g.m-3

Analyst's Comments:

These samples were collected by yourselves and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the submitter.

This report must not be reproduced, except in full, without the written consent of the signatory.

Maxin

Peter Robinson, MSc(Hons), PhD FNZIC Environmental Division Manager

Terry Cooney, MSc(Hons), PhD MNZIC **General Manager**

- R J Hill Laboratories Ltd -

Hill Laboratories

Address: 1 Clyde Street, Private Bag 3205, Hamilton, New Zealand K) Fill Laboratories Lim

Telephone: +64 (7) 858-2000 Facsimile: +64 (7) 858-2001

Email: mail@hill-labs.co.nz Internet: www.hill-labs.co.nz

Laboratory No: 376341

Date Registered: 29/04/2005

Date Completed: 30/05/2005

Page Number: 1 of 2

Client: Inst Geological & Nuclear Sciences Address: Wairakei Research Centre, Private Bag 2000 TAUPO Contact: Inst Geological & Nuclear Sciences

Client's Reference: LR GW Study

The results for the analyses you requested are as follows:

Sample Type: Water,

Sample Name	Lab No	Total Ammoniacal-N (g.m-3)	Total Kjeldahl Nitrogen (TKN) (g.m-3)	Nitrate-N + Nitrite-N (TON) (g.m-3)	Nitrate-N (g.m-3)	Nitrite-N (g.m-3)
21 26/04/05	376341/1	< 0.01	< 0.1	0.680	0.680	< 0.002
22 26/04/05	376341/2	0.23	2.7	0.360	0.358	< 0.002
23 26/04/05	376341/3	< 0.01	0.3	0.512	0.505	0.007
24 26/04/05	376341/4	< 0.01	< 0.1	6.67	6.67	< 0.002
25 28/04/05	376341/5	< 0.01	0.2	2.23	2.23	< 0.002
26 28/04/05	376341/6	< 0.01	0.2	1.65	1.65	< 0.002
27 28/04/05	376341/7	< 0.01	0.2	1.33	1.33	< 0.002
28 28/04/05	376341/8	0.25	17.6	0.095	0.081	0.014

Sample Name	Lab No	Dissolved Reactive Phosphorus	Total Phosphorus
		(g.m-3)	(g.m-3)
21 26/04/05	376341/1	0.090	0.105
22 26/04/05	376341/2	0.006	0.736
23 26/04/05	376341/3	0.013	0.177
24 26/04/05	376341/4	0.098	0.098
25 28/04/05	376341/5	0.006#	0.004#
26 28/04/05	376341/6	0.006	0.021
27 28/04/05	376341/7	0.024	0.076
28 28/04/05	376341/8	0.017	4.73

See Note 1

Sample Containers

The following table shows the same	ole containers that were associated w	ith this job.
Container Description	Container Size (mL)	Number of Containers

Sulphuric Preserved (250 mL)	250	8
Polyethylene (100 mL), unpreserved	100	8
Filtered Unpreserved (100 mL)	100	8
	100	

Details of sample bottle preparation procedures are available upon request.

ſ

This Laboratory is accredited by International Accreditation New Zealand (previously known as TELARC). The tests reported herein have been performed in accordance with its terms of accreditation, with the exception of tests marked *, which are not accredited. This report may not be reproduced, except in full, without the written consent of the signatory.

Client:Inst Geological & Nuclear Sciences	Laboratory No:376341	Page:2 of 2

Summary of Methods Used and Detection Limits The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Parameter	Method Used	Detection Limit
Total Ammoniacal-N	Phenol/hypochlorite colorimetry. Flow injection analyser. (NH4-N = NH4*-N + NH3-N) APHA 4500-NH ₃ H 20^{m} ed. 1998	0.01 g.m-3
Total Kjeldahl digestion	Sulphuric acid digestion with copper sulphate catalyst. APHA 4500- $N_{erg}D.$ (modified) $20^{th}ed.$ 1998	N/A
Total Kjeldahl Nitrogen (TKN)	Kjeldahl digestion, phenol/hypochlorite colorimetry (Flow Injection Analysis) APHA 4500-Norg D. (modified) 20 th ed. 1998	0.1 g.m-3
Nitrate-N + Nitrite-N (TON)	Total oxidised nitrogen. Automated cadmium reduction, Flow injection analyser. APHA 4500-NO ₃ I (Proposed) 20 th ed. 1998	0.002 g.m-3
Nitrate-N	Calculation: (Nitrate-N + Nitrite-N) - Nitrite-N.	0.002 g.m-3
Nitrite-N	Automated Azo dye colorimetry, Flow injection analyser. APHA 4500-NO ₃ I (Proposed) 20 th ed. 1998	0.002 g.m-3
Dissolved Reactive Phosphorus	Molybdenum blue colorimetry. Flow injection analyser. APHA 4500- P G (Proposed) 20 th ed. 1998	0.004 g.m-3
Total Phosphorus	Acid persulphate digestion, ascorbic acid colorimetry, Discrete Analyser. APHA 4500-P E (modified from manual analysis). 20 th ed. 1998	0.004 g.m-3

Analyst's Comments:

These samples were collected by yourselves and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the submitter.

This report must not be reproduced, except in full, without the written consent of the signatory.

Note 1: It has been noted that the results for "Dissolved Reactive Phosphorus" were greater than those for "Total Phosphorus", but within the analytical variation of these methods.

Peter Robinson, MSc(Hons), PhD FNZIC Environmental Division Manager

Terry Cooney, MSc(Hons), PhD MNZIC General Manager

- R J Hill Laboratories Ltd -

Hill Laboratories

Address: 1 Clyde Street, Private Bag 3205, Hamilton, New Zealand Telephone: +64 (7) 858-2000 Facsimile: +64 (7) 858-2001 Email: mail@hill-labs.co.nz Internet: www.hill-labs.co.nz

Client: Inst Geological & Nuclear Sciences Address: Wairakei Research Centre, Private Bag 2000 TAUPO Contact: Rob Reeves Laboratory No: 377245 Date Registered: 6/05/2005 Date Completed: 3/06/2005 Page Number: 1 of 2

Client's Reference: LR GW Study

The results for the analyses you requested are as follows:

Sample Type: Water,

Sample Name Lab No		29 04/05/05 8:50	30 04/05/05 9:45 377245/2	
		377245/1		
Total Ammoniacal-N	(g.m-3)	0.23	< 0.01	
Total Kjeldahl Nitrogen (TKN)	(g.m-3)	0.4	< 0.1	
Nitrate-N + Nitrite-N (TON)	(g.m-3)	1.68	6.33	
Nitrate-N	(g.m-3)	1.68	6.33	
Nitrite-N	(g.m-3)	< 0.002	< 0.002	
Dissolved Reactive Phosphoru	s (g.m-3)	0.013	0.052 #	
Total Phosphorus	(g.m-3)	0.015	0.051 #	

See Note 1.

Sample Containers

The following table shows the sample containers that were associated with this job.

Container Description	Container Size (mL)	Number of Containers
Filtered Unpreserved (100 mL)	100	2
Polyethylene (100 mL), unpreserved	100	2
Sulphuric Preserved (250 mL)	250	2

Details of sample bottle preparation procedures are available upon request.

This Laboratory is accredited by International Accreditation New Zealand (previously known as TELARC). The tests reported herein have been performed in accordance with its terms of accreditation, with the exception of tests marked *, which are not accredited. This report may not be reproduced, except in full, without the written consent of the signatory.

Client:Inst Geological	& Nuclear Sciences	Laboratory No:377245
------------------------	--------------------	----------------------

Summary of Methods Used and Detection Limits

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Parameter	Method Used	Detection Limit
Total Ammoniacal-N	Phenol/hypochlorite colorimetry. Flow injection analyser. (NH4-N = NH4 ⁺ -N + NH3-N) APHA 4500-NH ₃ H 20 th ed. 1998	0.01 g.m-3
Total Kjeldahl digestion	Sulphuric acid digestion with copper sulphate catalyst. APHA 4500- $N_{\rm org}$ D. (modified) $20^{\rm th}$ ed. 1998	N/A
Total Kjeldahl Nitrogen (TKN)	Kjeldahl digestion, phenol/hypochlorite colorimetry (Flow Injection Analysis) APHA 4500-Norg D. (modified) 20 th ed. 1998	0.1 g.m-3
Nitrate-N + Nitrite-N (TON)	Total oxidised nitrogen. Automated cadmium reduction, Flow injection analyser. APHA 4500-NO ₃ ⁻¹ I (Proposed) 20 th ed. 1998	0.002 g.m-3
Nitrate-N	Calculation: (Nitrate-N + Nitrite-N) - Nitrite-N.	0.002 g.m-3
Nitrite-N	Automated Azo dye colorimetry, Flow injection analyser. APHA 4500-NO3 I (Proposed) 20th ed. 1998	0.002 g.m-3
Dissolved Reactive Phosphorus	Molybdenum blue colorimetry. Flow injection analyser. APHA 4500- P G (Proposed) 20 th ed. 1998	0.004 g.m-3
Total Phosphorus	Acid persulphate digestion, ascorbic acid colorimetry, Discrete Analyser. APHA 4500-P E (modified from manual analysis). 20 th ed. 1998	0.004 g.m-3

Analyst's Comments:

These samples were collected by yourselves and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the submitter.

This report must not be reproduced, except in full, without the written consent of the signatory.

Note 1: It has been noted that the results for "Dissolved Reactive Phosphorus" were greater than those for "Total Phosphorus", but within the analytical variation of these methods.

Peter Robinson, MSc(Hons), PhD FNZIC Environmental Division Manager J. (Hons) PhD N

Terry Cooney, MSc(Hons), PhD MNZIC General Manager

- R J Hill Laboratories Ltd -

Page:2 of 2

Hill Laboratories

Address: 1 Clyde Street, Private Bag 3205, Hamilton, New Zealand Telephone: +64 (7) 858-2000 Facsimile: +64 (7) 858-2001

Email: mail@hill-labs.co.nz Internet: www.hill-labs.co.nz

Client: Inst Geological & Nuclear Sciences Address: Wairakei Research Centre, Private Bag 2000 TAUPO Contact: Rob Reeves Laboratory No: 378324 Date Registered: 17/05/2005 Date Completed: 3/06/2005 Page Number: 1 of 2

Client's Reference: LR GW Study

The results for the analyses you requested are as follows:

Sample Type: Water,

Sample Name		Utahina spring Intake 13/5/05	WST - 2 Waighehe Stream 14/5/05 378324/2	Paradise spring 13/5/05 378324/3	Barlows spring 13/5/05 378324/4
		378324/1			
Total Ammoniacal-N	(g.m-3)	< 0.01	< 0.01	< 0.01	< 0.01
Total Kjeldahl Nitrogen (TKN)	(g.m-3)	< 0.1	0.1	< 0.1	< 0.1
Nitrate-N + Nitrite-N (TON)	(g.m-3)	0.469	1.45	1.80	0.582
Nitrate-N	(g.m-3)	0.469	1.45	1.79	0.582
Nitrite-N	(g.m-3)	< 0.002	< 0.002	< 0.002	< 0.002
Dissolved Reactive Phosphoru	is (g.m-3)	0.085	0.099	0.028#	0.080
Total Phosphorus	(g.m-3)	0.087	0.109	0.025#	0.081

See Note 1

Sample Containers

The following table shows the sample containers that were associated with this job.

Container Description	Container Size (mL)	Number of Containers
Sulphuric Preserved (250 mL)	250	4
Filtered Unpreserved (100 mL)	100	4
Polyethylene (100 mL), unpreserved	100	4

Details of sample bottle preparation procedures are available upon request.

This Laboratory is accredited by International Accreditation New Zealand (previously known as TELARC). The tests reported herein have been performed in accordance with its terms of accreditation, with the exception of tests marked *, which are not accredited. This report may not be reproduced, except in full, without the written consent of the signatory.

Client: Inst Geological & Nuclear Sciences	Laboratory No:378324
--	----------------------

Page:2 of 2

Summary of Methods Used and Detection Limits

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Substance Type: Water

Parameter	Method Used	Detection Limit
Total Ammoniacal-N	Filtered sample. Phenol/hypochlorite colorimetry. Discrete Analyser. (NH4-N = NH4*-N + NH3-N) APHA 4500-NH ₃ F (modified from manual analysis) 20 th ed. 1998	0.01 g.m-3
Total Kjeldahl digestion	Sulphuric acid digestion with copper sulphate catalyst. APHA 4500- N_{erg} D. (modified) 20th ed. 1998	N/A
Total Kjeldahl Nitrogen (TKN)	Kjeldahl digestion, phenol/hypochlorite colorimetry (Discrete Analysis). APHA 4500-Norg C. (modified) 4500-NH ₃ F (modified) 20 th ed. 1998	0.1 g.m-3
Nitrate-N + Nitrite-N (TON)	Total oxidised nitrogen. Automated cadmium reduction, Flow injection analyser. APHA 4500-NO ₃ I (Proposed) 20 th ed. 1998	0.002 g.m-3
Nitrate-N	Calculation: (Nitrate-N + Nitrite-N) - Nitrite-N.	0.002 g.m-3
Nitrite-N	Automated Azo dye colorimetry, Flow injection analyser. APHA 4500-NO ₃ ⁻¹ (Proposed) 20 th ed. 1998	0.002 g.m-3
Dissolved Reactive Phosphorus	Filtered sample. Molybdenum blue colorimetry. Discrete Analyser. APHA 4500-P E (modified from manual analysis) 20 th ed. 1998	0.004 g.m-3
Total Phosphorus	Acid persulphate digestion, ascorbic acid colorimetry, Discrete Analyser. APHA 4500-P E (modified from manual analysis). 20 th ed. 1998	0.004 g.m-3

Analyst's Comments:

These samples were collected by yourselves and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the submitter.

This report must not be reproduced, except in full, without the written consent of the signatory.

Note 1: It has been noted that the results for "Dissolved Reactive Phosphorus" were greater than those for "Total Phosphorus", but within the analytical variation of these methods.

Peter Robinson, MSc(Hons), PhD FNZIC Environmental Division Manager

Terry Cooney, MSc(Hons), PhD MNZIC General Manager

- R J Hill Laboratories Ltd -

Tritium/CFC/SF₆ Method

The tritium samples were analysed using the Institute of Geological & Nuclear Sciences Ltd. (GNS) state-of-the-art tritium measurement system with extremely high detection sensitivity for the low tritium concentrations prevailing in New Zealand's waters. The detection limit is 0.03 TU, using ultra low-level liquid scintillation spectrometry and electrolytic enrichment prior to detection. One litre of water is required for analysis. Reproducibility of a standard enrichment is 2%, and an accuracy of 1% can be achieved via deuterium calibrated enrichment (Taylor 1994). Water gas (CFCs and SF6) concentrations were analyzed at GNS by gas chromatography.

Reference

Taylor, C.B., 1994. The relationship between electrolytic deuterium and tritium separation factors, and attainment of improved accuracy in radiometric low-level tritium measurement. Appl. Radiat. Isot. Vol. 45, No. 6, pp. 683-692.

Appendix 6.1 Description of Lake Rotorua springs, seeps and wetlands identified in the lake-edge survey.

Site 1

This seep is situated at the side of the road in front of 60 Pohutukawa Drive, on the southeastern side of Lake Rotorua. The location of this site is 2799702, 6336862, using Garmin GPS, with an error of +/- 20m. The flow emerges from the grass by the footpath, and runs west for approximately 40 metres along the gutter to the drain. The driveway is also wet. The flow rate can possibly be measured in the trickle of water by the grass. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 22 November 2004.

Figure 1.1. Seep in gutter outside 60 Pohutukawa Drive, Rotorua.

Figure 1.2. Seep on driveway of 60 Pohutukawa Drive, Rotorua.

Site 2

Seeps situated next to the footpath outside 54A Pohutukawa Drive, on the south-eastern side of Lake Rotorua. The location of this site is 2799733, 6336781, using the handheld Garmin GPS, with an error of ± 20 m. This property is opposite the Pohutukawa Drive reserve, and the seep is approximately 2 m west of the letterbox. It covers an area of 2 m x 2 m, and wets the gutter on the side of the road towards the west. Flow rate is unlikely to be measurable due to the small amount of flow, and abundance of mud. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 22 November 2004.

Figure 2.1. Seep outside 54A Pohutukawa Drive, Rotorua.

The wetland is located at south side of Pohutukawa Drive Reserve, approximately 15 m from the road, at the south-eastern side of Lake Rotorua. One point on the area's western edge is 2799773, 6336819, using the handheld Garmin GPS, with an error of +/-20 m. The wetland covers an area of approximately 40m x 20m and can be seen as a patch of long grass. It is a boggy area, so it is unlikely that surface water flow rate could be easily measured. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 22 November 2004.

Figure 3.1. Wetland area at south end of Pohutukawa Drive reserve.

Site 4

This wetland area is located at the north-eastern side of Pohutukawa Drive reserve, approximately 15 metres south of the stream, at the south-eastern part of Lake Rotorua. It is situated at 2799840, 6336842, using Garmin GPS, with an error of \pm 20 m. The area of wetland is roughly 30 m x 2 m, runs east, and is at right angles to another small boggy region or ditch. Due to the lack of flow and amount of mud, a surface water flow rate is unlikely to be able to be measured. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 22 November 2004.

Figure 4.1. Wetland area at north-eastern end of Pohutukawa Drive reserve.

This seep is situated on and around the property of 48 Pohutukawa Drive, at the south-eastern part of Lake Rotorua. The location of this site is 2799711, 6336746, using the handheld Garmin GPS, with an error of \pm 20 m. The water has formed a muddy hole in the grass outside the house, and also boggy areas in front of the house next door (46 Pohutukawa Dr.), and house behind. The wet area covers approximately 30 m x 4 m on the front yard and road side of fence. The property owner stated that both the front yard and the back yard often flood, and the water is only about 5 cm below the ground surface. The front lawn drains into the road-side gutter, and the back lawn drains into the property behind. It would be difficult to obtain a surface flow measurement. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 22 November 2004.

Figure 5.1. Seep in front of 48 Pohutukawa Drive, Rotorua.

Site 6

This seep is beside the footpath outside 38 Pohutukawa Drive, at the south-eastern side of Lake Rotorua. The location is 2799686, 6336687, using the handheld Garmin GPS, with an error of +/-20 m. Both sides of the footpath are wet, and the water drains down the gutter for about 15 m. It is only a very small amount of water, so it is unlikely a flow rate would be able to be measured. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 22 November 2004.

Figure 6.1. Seep outside 38 Pohutukawa Drive, Rotorua.

This area of seepage is at the south-east side of the Karenga Street Reserve, at the south-western side of Lake Rotorua. It has a location of 2794284, 6337242, using the Garmin GPS, with an error of +/-20 m. The area is roughly 10m x 10m, and is wet, spongy grass to the lake edge. Water can be seen when the grass is pressed. The flow rate is unlikely to be able to be measured, as there is no obvious flow or outlet. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 22 November 2004.

Figure 7.1. Area of seepage at Southeast corner of Karenga Street Reserve.

Site 8

The area of seepage at site eight is located at the northern end of the Karenga Street Reserve, at the south-western side of Lake Rotorua. It is situated at 2794248, 6337322, using the Garmin GPS, with an error of \pm 20 m. This site is approximately 80 metres north of site seven, and has an area of 20 m x 15 m, and extends for another 20 metres along the lake edge to the south. It is wet, and nearby residents said the area used to be muddy, but has now been planted to stabilize the ground. Due to the lack of drainage channel, it is unlikely a flow rate could be measured. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 22 November 2004.

Figure 8.1. Area of seepage at northern end of Karenga Street Reserve.

This small area of seepage is located approximately 30 metres north of 172 Parawai Rd, on the opposite side of the road to a wetland area, near Ngongotaha at the western side of Lake Rotorua. The location is 2792588, 6340520, using the Garmin GPS, with an error of \pm 20 m. The seep covers an area of 1 m x 1.5 m and drains into the ditch at the side of the road. As the small amount of water can be seen running into the drain, it may be possible to measure the flow rate. The stream in the ditch is not very close to the lake edge. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 22 November 2004.

Figure 9.1. Seep draining into ditch on Parawai Road, Rotorua

<u>Site 10</u>

This wetland is situated next door to 172 Parawai Road in a north direction, at the western side of Lake Rotorua. The location of the wetland extends from 10m south of 2792770, 6340646 at its northern extremity, to a few metres northwest of 2792665, 6340522 at its western end, measured using Garmin GPS, which has an error of \pm 20 m. It is an 'L' shape, approximately 170 m x 120 m. A brown stream runs parallel with one arm, but no other drainage channel was observed, particularly due to the blackberry bushes which barred lake access. Therefore, flow rate measurements would be difficult, unless the brown stream was measured, but its source is unknown. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 22 November 2004.

Figure 10.1. North end of wetland on Parawai Road, Rotorua, looking southwest.

Figure 10.2. Southwest end of wetland on Parawai Road, Rotorua, looking north.

The wetland is at the end of Waikuta Road, beside number 48. The area is on the western side of Lake Rotorua. When visiting the site, the property owners were away, so access was limited. A stream flowed under the driveway at 2793032, 6340155, measured using Garmin GPS, which has an error of +/- 20 m, but the source of the stream remains unobserved. This area, including Parawai Road, is likely to feature on the wetlands map. Visited by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 22 November 2004.

Site 12

Access to the spring at site twelve is through the property at 89 Mokoia Road (RD2), owned by Douglas Black. The location is 2793032, 6340155 measured using Garmin GPS, which has an error of +/- 20 m. The spring can be seen on the bank by the path around the pongas. Water is piped down the hill and drains onto the grass at the base, where it is boggy. The spring is approximately 3 m west horizontally from the lake edge, and 10 m higher than lake level. Douglas Black reported that flow rate dramatically decreases during dry conditions, and increases during wet conditions. A flow rate measurement can be taken in the pipe to the left of the path when descending. Observed by Sally Grant and Rob Reeves from Wairakei Geological and Nuclear Sciences, on 29 November 2004.

Figure 12.1. Spring emerges at bank on the left, at 89 Mokoia Road, Rotorua.

Figure 12.2. Spring is behind the pongas at centre of photograph.

Site 12A

A wetland area appears to exist just north of 89 Mokoia Rd, with a pool and wetlands. No drainage channel was observed as the land was not accessed.

Site 13

Hamurana Springs, just north of Hamurana Road at the northern end of Lake Rotorua, drains into Lake Rotorua as Hamurana Stream. There are several sources which form the springs, a couple of which are shown in the photographs. The springs are located at 2795789, 6347331 using Garmin GPS, which has an error of +/- 20 m. The spring to the east has a sign stating a flow rate of 4,5000,000 litres per hour, a depth of 15 metres, and an elevation of 280 m above sea level. A flow rate can be obtained from the stream draining into the lake. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 1 December 2004.

Figure 13.1. North-western spring at Hamurana Springs.

Figure 13.2. Large eastern spring at Hamurana Springs.

Figure 13.3. Spring emerging on eastern arm of Hamurana Springs.

<u>Site 14</u>

A possible seep exists approximately 70 metres west along a walking track from a small reserve at Mission Bay, at the north-eastern end of Lake Rotorua. The bank is 2 m north of the track, and was dripping into a small pool at its base. No drainage channel was observed, and the seep may be runoff from rainfall. Flow rate measurements may be difficult here. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 1 December 2004.

Figure 14.1. Seep emerging from bank, Mission Bay, Rotorua.

A spring emerges at a farm called the S6 block, on Ngongotaha Rd, on the western side of Lake Rotorua. The owners name is Alec Wilson, and he can be contacted on 027 4832974. All of the following GPS recordings used the handheld Garmin GPS which has an error of +/-

20 m. There are four springs that join to form Waikuta Stream, which crosses under Ngongotaha Road at 2792387, 6340111. This is the easiest place to measure the combined flow of the springs, at the western side of the road. The first spring is the main spring welling up in a pond at 2792324, 6340000, with an elevation of 283 m. The two banks to the west have a spring each, the southern most bank is at 2792308, 6340009, with the spring at the base of the bank, two metres below. The northern bank is 10 metres to the north, and has a larger flow. The older spring is

100 m south of the main pond, and used to be the main spring until an earthquake slowed flow (Wilson pers. comm.). The source was not observed due to vegetation. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 6 December 2004.

Figure 15.1. Main spring at S6 Ngongotaha Rd, Rotorua.

Figure 15.2. Springs at S6 Ngongotaha Rd, Rotorua, looking north.

Figure 15.3. Springs at S6 Ngongotaha Rd, Rotorua, looking south. The south-western bank is on the right of the photo, and the main spring in the centre. The older spring is in the direction of the top right of the photo.

Taniwha Springs, north-western side of Lake Rotorua, off Hamurana Road, Awahau. The source of these large springs was not observed due to vegetation. A flow rate could be measured near the bridge. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 6 December 2004.

Figure 16.1. Taniwha Springs stream, Awahau, Rotorua,

Site 17

A small wetland area occurs at northern end of lake, west of Hamurana Springs. It runs approximately 100 m perpendicular to the lake edge, at 2793908, 6346435, at lake level elevation of 292 m. The only apparent drainage is two small streams at its eastern edge, and the flow rate could be measured from these, but the rest of the area is muddy and not flowing. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 6 December 2004.

Figure 17.1. Wetland area at northern edge of lake, west of Hamurana.

Figure 17.2. Wetland area at northern edge of lake, west of Hamurana, wide view.

Site 17A

Stream joins the lake at: 2794254, 6346595, at an elevation of 296 m.

<u>Site 17B</u>

Small stream joins the lake at 2794393, 6346615, at an elevation of 275 m. It is piped under the road, but could not find where it came out of the other side.

<u>Site 18</u>

This seep emerges at a boat ramp, west of Hamurana, on the northern side of Lake Rotorua. It is located at 2794554, 6346665, at a 278 m elevation. Water is seeping out of the cracks of the boat ramp, and on both sides on the banks. Also, a concrete trough has flowing water from no apparent source, 5 m to the east of the ramp. The flow rate of the water can be measured on both sides of the ramp. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 6 December 2004.

Figure 18.1. Seep emerging from boat ramp just west of Hamurana. Water is seeping out of cracks (centre) and both sides of ramp. Trough is to the east of the ramp.

Site 18A

This stream joins the lake near 2794753, 6346709, elevation of 269 m. It flows into the sand and a flow rate could be measured here.

Site 18B

There are about three boggy areas (up to 2 m wide) in the reserve along the lakefront west of Hamurana Springs.

<u>Site 18C</u>

A pipe with flowing water surfaces at 2795060, 6346788, at 276 m elevation.

<u>Site 18D</u>

Water flows out of concrete pipes at 2795203, 6346811, at 287 m elevation, and the flow rate can be measured.

<u>Site 19</u>

This wetland is an area approximately 20 m x 20 m on the northern side of Hamurana Road, and feeds into a small stream under the road which flows into the lake from a concrete trough at 2795249, 6346844, elevation of 289 m. Flow rate could be measured in trough. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 6 December 2004.

Site 19A

A small flow joins the lake at 2795406, 6346818, 277m elevation.

This seep is in a bank immediately west of the Hamurana reserve and occurs along 20 to 30 m of bank at 2795442, 6346823. Banks are directly above the edge of the lake, and are eroding. Some flow rates could be measured from the small flows at the base of the bank. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 6 December 2004.

Figure 20.1. Wide view of seeping bank immediately west of Hamurana reserve.

Figure 20.2. Seeping bank immediately west of Hamurana reserve.

Site 20A

A pipe emerges from the ground opposite the western entrance to Hamurana reserve, and there are approximately three other concrete pipes surfacing along the lake front in this reserve.

Site 20B

A concrete drain is at 2795516, 6346806, elevation 271 m, with a wet patch beside it. This could be a spring, or just wet from the waves and currently high lake level.
A spring on the eastern side of the lake, near the Rotorua airport, surfaces at 2801176, 6339385, at lake level. The spring flows into a pool 2 m x 1 m, which drains into the lake where a flow rate can be measured. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 7 December 2004. Access is by boat.

Figure 21.1. Spring emerges from vegetation close to the lake edge, eastern side of Lake Rotorua.

Figure 21.2. Outlet from the spring to Lake Rotorua.

Site 21A

A drain flows to 2801330, 6339541, elevation of 287m (lake level) out of long grass. Source is unobserved.

Site 22

A stream drains from a wetland area, and flows into the lake at 2801556, 6340119, elevation 286 m. Flow rate could be measured from the stream. A second stream draining from the same wetland is 50 m north of this stream, and a third stream is 100 m north of this second stream. Further streams probably flow into the lake just south of these, but willow trees block visibility and access. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 7 December 2004.

Figure 22.1. First drainage stream from wetland, eastern side of Lake Rotorua.

Figure 22.2. Second drainage stream from wetland, eastern side of Lake Rotorua.

Figure 22.3. Third drainage channel from wetland, eastern side of Lake Rotorua.

Site 23

This channel is the outlet to swampy area at 2801666, 6340428, elevation 284 m. Another similar stream is 20 m north of this stream. Flow rates could be measured in the streams. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 7 December 2004.

Figure 23.1. Swampy area, eastern side of Lake Rotorua.

Figure 23.2. Outlet channel 20 m north of swampy area.

Site 24

This wetland has a pond and a drainage outlet at 2801921, 6342478, at lake level elevation of 282 m. Flow rate could be measured from the outlet channel. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 7 December 2004.

Figure 24.1. Wetlands pond, eastern side of Lake Rotorua.

Figure 24.2. Drainage channel to wetlands area, eastern side of Lake Rotorua.

This feature appears to be road run-off to a pool that stops 3 m from the lake, and is not flowing. Is situated at 2801972, 6343040, 277 m elevation. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 7 December 2004.

Figure 25.1. Pool of road run-off water, eastern side of Lake Rotorua.

<u>Site 26</u>

The wetland area is approximately 50 m x 10 m with no observed drainage channel at 2801840, 6344699, elevation 280 m. Water is not flowing. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 7 December 2004.

Figure 26.1. Wetland area, eastern side of Lake Rotorua.

This wetland drainage channel stops 3m from lake edge and is not flowing. It is situated at 2800264, 6338133, by the Lee Rd boat ramp, eastern Lake Rotorua. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 27.1. Wetland drainage pool, near Lee Road boat ramp, Rotorua.

<u>Site 28</u>

This stream flows into lake at 2800068, 6337836, elevation 261 m and is next to the playground by Lee Road, eastern Lake Rotorua. Flow rate could be measured in the stream. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 28.1. Stream flows into lake near Lee Road playground.

<u>Site 29</u>

A concrete and steel drain has water flowing into the lake from the sides of the road at the Holden Bay reserve, eastern Lake Rotorua. The pipes end one metre offshore, at 2799917, 6337716, just below lake level. Flow rate could be measured in the holes in the pipe on the beach. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 29.1. Steel pipes emerge offshore from Holdens Bay reserve.

<u>Site 30</u>

This drain runs along lake bed for 10m offshore at 2799778, 6337633, approximately one metre below lake level. Measuring the flow rate in this drain would probably be difficult. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 30.1. Drain runs along lake bed for 10m offshore, eastern Lake Rotorua.

Site 31

This stream flows into the lake under willow trees at 2799575, 6337528, elevation 284 m. Flow rate could be measured in stream. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 31.1. Stream flows into lake under willow trees, eastern Lake Rotorua.

Site 32

A small flow of water comes out of steel pipes at 2799368, 6337393, elevation 281 m. Flow rate could be measured at the end of the pipe. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 32.1. Steel pipes emit flowing water, eastern side of Lake Rotorua.

Flow from this steel pipe emerges at 2799251, 6337344, at lake level. Flow rate could be measured at the end of the pipe. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 33.1. Large steel pipes have flowing water, eastern side of Lake Rotorua.

Site 34

The Robinson Ave Floodway flows into the lake at 2799197, 6337322, elevation is lake level. The floodway is wide and the flow rate could be measured as it flows into the lake. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 34.1. Outlet channel of Robinson Ave floodway, eastern Lake Rotorua.

Figure 34.2. Robinson Ave floodway, eastern side of Lake Rotorua.

Site 35

This stream reaches the eastern side of Lake Rotorua at 2799080, 6337297, just above lake level. It flows between houses, and the flow rate could be measured as it reaches the lake. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 35.1. Stream flowing into Lake Rotorua.

This drain stops 3 m from lake edge, and has no flow. Is situated at 2799023, 6337294, at 279 m elevation. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 36.1. Drain with no water flowing, eastern Lake Rotorua.

Site 37

The area includes four geothermal springs with warm water (Mallinson pers. comm.) at the lake edge. The first is 10 cm above lake level at 2798860, 6337321, and is the northern-most spring. It has a measurable flow.

The second spring is approximately 0.8 m above lake level, and is at 2798852, 6337323.

The third spring is 30 m south of the previous spring, under flax, and the fourth spring is 20 m south of the third spring. All flow rates could be measured.

Figure 37.1. Wide view of first and northern most spring, eastern side of Lake Rotorua.

Figure 37.2. The second geothermal spring, eastern side of Lake Rotorua.

Figure 37.3. The fourth and most southern geothermal spring, eastern Lake Rotorua.

A drain flows into the lake, which has two sources, one behind the tree house, the other in the wooden drain. This drain possibly contains geothermal water (landowner pers. comm.). Located at 2798715, 6337353, 278 m elevation. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 38.1. Drain flowing into lake, eastern Lake Rotorua.

<u>Site 39</u>

Flow reaches lake at 2798629, 6337291, running over an orange rock. Is possibly geothermal, and the flow rate can be measured. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 39.1. Small flow runs into eastern side of Lake Rotorua.

<u>Site 40</u>

This drain possibly contains road run-off, at 2798484, 6337001, elevation 278 m. Flow rate could be measured. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 40.1. Drain, eastern side of Lake Rotorua.

This drain has no apparent flow and stops 3 m from the lake edge. The drain is situated at 2798474, 6336961, 278 m elevation. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 40.1. Drain with no flow, eastern side of Lake Rotorua.

Site 42

This stream flows into the lake at 2798321, 6336703 at lake level. No source was observed due to vegetation. Flow rate can be measured in stream. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 42.1. Stream draining into lake from vegetation, eastern side of Lake Rotorua.

Site 43

This stream flows through vegetation and joins the lake at 2798218, 6336620, at lake level. Flow rate can be measured in stream. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

> Figure 43.1. Stream emerges from vegetation, eastern Lake Rotorua.

The stream drains through fields from unknown source and flows into lake at 2798129, 6336509, elevation 275 m. Flow rate could be measured in stream. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 44.1. Stream drains through fields and flows into eastern Lake Rotorua.

Site 45

A small stream drains from fields and flows into Lake Rotorua at 2798102, 6336490, elevation 276 m. Flow rate could be measured from stream. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 45.1. Stream drains through fields and flows into eastern Lake Rotorua.

<u>Site 46</u>

A small seepage from wetland emerges under gorse bush at 2797897, 6336310, 278 m elevation. The flow rate is quite low. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 46.1. Wetland seepage emerges under gorse bush, eastern Lake Rotorua.

A small seepage issues from a wetland (site 46), located at 2797884, 6336291. The flow rate is quite low. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 47.1. Wetland seep, eastern Lake Rotorua

<u>Site 48</u>

Seepage along a 0.5m high bank occurs from the same wetland as site 46. The flow rate is quite low. Located at 2797876, 6336291. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 48.1. Seepage along bank from wetlands, eastern Lake Rotorua.

<u>Site 49</u>

Another seep from the wetland of site 46 is located at 2797860, 6336283. It would be difficult to measure flow rate as the flow rate is low. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

This seepage is from a wetland dripping off a small bank at 2797714, 6336171. The flow rate is low. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 50.1. Wetland seepage dripping off bank, eastern Lake Rotorua.

Site 51

This stream is from wetland at 2797671, 6336111 and flows into lake. It can be measured for a flow rate. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 51.1. Outlet stream from a wetland, eastern Lake Rotorua.

<u>Site 52</u>

This wide stream flows into the lake at 2797476, 6335966. Flow rate could be measured. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 52.1. Stream flowing into the eastern side of Lake Rotorua.

This seepage from a wetland is located at 2797166, 6335645, at lake level. There is no surface flow. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 53.1. Wetland seepage with no flow, south-east side of Lake Rotorua.

Site 54

This stream flows into Lake Rotorua at 2796995, 6335256. Flow rate could be measured in the stream. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 54.1. Outlet to stream, South-east Lake Rotorua.

Figure 54.2. Stream, south-east Lake Rotorua.

Swamp land (geothermal) southeast of Sulphur Point stops about 10m from lake edge, and has a stream which flows west, parallel to the lake. Flow rate could be measured in the stream. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 55.1. Outlet stream to geothermal swamp, Southeast of Sulphur Point

Figure 55.2. Geothermal swamp southeast of Sulphur Point.

Site 56

This drain stops one metre from the lake on Sulphur Point and is not flowing. The drain is located at 2795975, 6336112, at lake level. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 56.1. Drain on Sulphur Point, not flowing.

<u>Site 57</u>

This is a manmade channel containing water; the water does not flow into the lake. Located at 2795694, 6336134. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 57.1. Manmade channel on Sulphur Point, no water flowing.

© Institute of Geological & Nuclear Sciences Ltd

This stream flows into Lake Rotorua near the large childrens playground, Lake Rotorua waterfront. Flow rate measurements could be made here. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 58.1. Stream flows into Lake Rotorua near the waterfront and playground.

Site 59

A stream occurs at 2795538, 6336166, near Rotorua's waterfront. The stream flows into sand. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 59.1. Water does not reach lake edge due to sandbank, near Rotorua's waterfront.

Site 60A

This large pipe is under a walkway by the cruise offices at Rotorua's waterfront, at 2795247, 6336318. Flow rate could be measured. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 60.1. Large pipe at Rotorua's waterfront.

Site 60B

A pipe emerges under the walkway to Mokoia Island cruises on the lake front at 2795168, 6336355.

Figure 60.2. Drainage pipe at Rotorua Lakefront.

Site 60C

A drain is located 20 m west of Site 60B and there is a big pipe emerging at the lake front at 2795130, 6336385.

Figure 60.3. Big pipe at Rotorua Lakefront

Site 61

A drain with hot water emerges at 2795018, 6336473. Water flow could possibly be measured. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

A concrete pipe is situated at 2795016, 6336511, at the south end of Lake Rotorua. Flow rate could be measured in the drain. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 62.1. Drain at south end of Lake Rotorua.

Site 63

An inlet at the south of Lake Rotorua, at Ohinemutu, has four geothermal hot water drains flowing into it. The most western pipe is located at 2794792, 6336519. The second pipe is 20 m east of the previous pipe, and the third and fourth are at the eastern end of the inlet. Flow rate measurements should be possible. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 63.1. Western hot water pipe at Ohinemutu inlet, Lake Rotorua.

Another small pipe is dripping hot water in from a marae at the side of the inlet, at 2794825, 6336575.

This drain (or stream) is located at 2794768, 6336649. Flow rate measurements could be made in the stream. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 64.1. Drain (or stream) near Ohinemutu, Lake Rotorua.

Site 65

Utuhina Stream flows into the south end of Lake Rotorua at 2794783, 6336822. Flow rate could be measured in the stream. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 65.1. Utahina Stream flowing into the south end of Lake Rotorua

<u>Site 66</u>

A small pipe one metre high has water flowing into the lake at 2794542, 6336918, and there is a similar pipe 50 m west of these coordinates. A flow rate measurement is possible. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 66.1. Small pipe with water flowing into lake, south side of Lake Rotorua.

<u>Site 67</u>

At the end of a road, two concrete pipes drain roadside water into the south end of Lake Rotorua. Flow rates could be measured from these pipes. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 67.1. Roadside runoff drains through pipes into lake.

Houses 30 m west of this location have drains that discharge into the lake.

<u>Site 68</u>

A drain in the camping ground carries flowing water into the south end of Lake Rotorua at 2794427, 6336998, at lake level, near the wharf. A flow rate measurement is possible. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 68.1. Camping ground drain

Road runoff drains into the lake from both sides of the road at 2794315, 6337115, at lake level. Flow rate measurements can be made in the drains. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 69.2. Western side of road, water drains into Lake Rotorua.

<u>Site 70</u>

A drain occurs at 2794322, 6337171 and flow rates could be measured. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 70.1. Drain by houses, southwest Lake Rotorua.

Site 71

A road drain occurs beside a reserve at 2794213, 6337623, southwest Lake Rotorua. Flow rate could be measured in the pipe. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 71.1. Drain by reserve, southwest Lake Rotorua.

<u>Site 72</u>

Waiowhiro stream at the end of Aquarius Drive, western Lake Rotorua, located at 2794211, 6339256. Flow rate can easily be measured in stream. Observed by Sally Grant, from Wairakei Geological and Nuclear Sciences, on 8 December 2004.

Figure 72.1. Waiowhiro Stream, western Lake Rotorua.

Site 73

A spring between Mission Bay and Wilson Bay at the north end of Lake Rotorua is located at 2799510, 6346340 (located by reading co-ordinates off a topographic map). This location is estimated from the topographic map. It was last observed by Will Esler, of Waikato University on 24 July 2002, and he estimates that it has a constant approximate flow rate of 5 l/s. The site was not visited in 2004.

Glenn Ellery attempted to find the spring in February 2005. He spent half an hour bush bashing along the lake edge but could not find the spring (Ellery pers. comm., 2005).

At least three lake-bed springs exist near Motutara Point. Spring locations are marked by dark areas in the lake surface (Gibbs, pers. comm., 2004). Dark areas are caused by plumes of cold water displacing the turbid surface film of sulphur and sediment. The springs appear to be aligned, possibly indicating the location of a lake-bed fault.

These springs were not observed by the authors of this report.

Dark areas are caused by vertical plumes of cold water from lake bed springs displacing the turbid surface film of sulphur and sediment

Photo credit: This composite photograph shows locations of five possible springs not far off the boat ramp at Sulphur Point (Gibbs pers. comm., 2004). Note that the correct name for the point in the photograph is probably Motutara Point.

Locations of springs, estimated by Max Gibbs, are approximately: 2796700 6336300 2797000 6336350 2797400 6336300

On some days, clouds of silt from the lake bed can be seen at the surface from upwelling water, according to the harbourmaster.

Site 75

These are 'a series of submerged springs quite close to shore' mentioned by Gibbs and Lusby (1996). A remnant wetland, pasture and a 10 m - wide band of blackberries and small trees make up the catchment immediately behind the beach.

These springs were not observed by the authors of this report. Locations of the springs are approximately 2798400 6336800

Notes:

1) All GPS recordings were made using the handheld Garmin GPS, which has an error of +/- 20 m.

2) The area covered between Kawaha point and Hamurana Springs was only searched for seeps and springs, and therefore no streams or pipes were located. However they are described for all other searched areas.

3) The northern side of the lake has been carefully searched from the site 17 wetland to 2796637, 6346993. East of here, access to the lake is too difficult, and a boat must be used to observe features.

4) Elevation estimates of features listed in this appendix provided by GPS are relatively unreliable, for example lake elevation estimates show some inconsistency.

Reference

Gibbs, M.M. Lusby, F.E. 1996. Lake edge wetlands: their environmental significance to the Rotorua lakes. NIWA consultancy report to Environment Bay of Plenty BPR005/2. 45p.

Appendix 6.2 Flow measurements made by Environment Bay of Plenty in December 2004 and February 2005.

Date	Site	GPS Co-ordinates	Guage Type	Discharge L/sec	Lake-edge feature number
8-Dec-04		2793089 6340187	Meter	62	11
2-Feb-05		2792418 6344419	Visual	0	12
2-Feb-05		2792308 6340009	Visual	30	15
8-Dec-04	Culvert 5.22	2793798 6346648	Visual	0	17
8-Dec-04	Culvert 6.78	2795268 6347032	Estimation	0.07	19
2-Feb-05		2801176 6339385	Visual	3	21
8-Dec-04		2801558 6340119	Estimation	6	22
8-Dec-04		2801672 6340426	Visual	0	23
8-Dec-04		2801918 6342455	Estimation	4	24
2-Feb-05		2800068 6337836	Visual	15	28
8-Dec-04	Waingaehe Stm @ Lwr Right Branch	2799588 6337492	Meter	183	31
2-Feb-05		2799197 6337322	Meter	110	34
2-Feb-05		2799080 6337297	Visual	4	35
2-Feb-05		2798860 6337321	Visual	2	37
2-Feb-05		2798715 6337353	Visual	3	38
2-Feb-05		2798629 6337291	Visual	6	39
2-Feb-05		2798484 6337001	Visual	0.25	40
10-Dec-04	Stream2 @ Vaughan Rd	2798316 6336699	Estimation	2.5	42
10-Dec-04	Stream1 @ Vaughan Rd	2798219 6336609	Meter	3.671	43
8-Dec-04		2798137 6336509	Estimation	1.5	44
8-Dec-04		2798100 6336489	Estimation	1	45
8-Dec-04		2797901 6336309	Estimation	0.3	46
8-Dec-04		2797884 6336301	Estimation	0.75	47
8-Dec-04		2797871 6336281	Estimation	0.005	48
8-Dec-04		2797861 6336276	Estimation	1.5	49
8-Dec-04		2797710 6336164	Estimation	0.005	50
2-Feb-05		2797671 6336113	Visual	3	51
2-Feb-05		2797476 6335968	Meter	24	52
8-Dec-04		2797152 6335646	Estimation	0.05	53
10-Dec-04	Stream by Mill	2796987 6335247	Visual	0	54
2-Feb-05		2796752 6335136	Visual	10	55
8-Dec-04		2795972 6336106	Visual	0	56
8-Dec-04		2795694 6336133	Visual	0	57
8-Dec-04		2795660 6336157	Estimation	5.5	58
8-Dec-04		2795543 6336187	Visual	0	59
8-Dec-04		2795248 6336320	Visual	0	60
8-Dec-04		2795014 6336511	Visual	0.01	62
8-Dec-04		2794797 6336520	Estimation	0.75	63
8-Dec-04		2794777 6336645	Estimation	1.5	64
7-Nov-04	Utuhina @ Lake Front	2794685 6336726	Meter	1692	65
2-Feb-05		2794542 6336918	Visual	0.1	66
8-Dec-04		2794479 6336959	Visual	0	67
8-Dec-04		2794414 6337027	Estimation	0.3	68
8-Dec-04		2794313 6337115	Estimation	4	69
8-Dec-04		2794316 6337177		0	70

Date	Site	GPS Co-ordinates	Guage	Discharge	Lake-edge feature
			туре	L/Sec	number
8-Dec-04		2794231 6337608		0.3	71
7-Dec-04	Waiowhiro @ Lake	2794085 6339258	Meter	298	72
7-Dec-04	Culvert 13.85	2801596 6345871	Visual	0	76
7-Dec-04	Culvert 13.81	2801547 6345679	Visual	0	77
7-Dec-04	Culvert 13.51	2801290 6345876	Visual	0	78
7-Dec-04	Culvert 13.28	2801135 6346065	Visual	0	79
7-Dec-04	Culvert 13.18	2801108 6346099	Visual	0	80
7-Dec-04	Culvert 13.04	2800980 6346199	Visual	0	81
7-Dec-04	Culvert 12.97	2800904 6346248	Visual	0	82
7-Dec-04	Culvert 12.91	2800873 6346274	Visual	0	83
7-Dec-04	Culvert 12.82	2800815 6346309	Visual	0	84
7-Dec-04	Culvert 12.72	2800734 6346369	Visual	0	85
7-Dec-04	Culvert 12.62	2800633 6346415	Visual	0	86
7-Dec-04	Culvert 12.58	2800592 6346428	Visual	0	87
7-Dec-04	Culvert 12.43	2800455 6346426	Visual	0	88
7-Dec-04	Culvert 12.38	2800286 6346419	Visual	0	89
7-Dec-04	Culvert 12.11	2800141 6346399	Visual	0	90
7-Dec-04	Culvert 12.08	2800103 6346392	Visual	0	91
7-Dec-04	Culvert 11.94	2799983 6346372	Visual	0	92
7-Dec-04	Culvert 11.83	2799876 6346360	Visual	0	93
7-Dec-04	Culvert 11.60	2799672 6346447	Visual	0	94
7-Dec-04	Culvert 11.55	2799625 6346450	Visual	0	95
7-Dec-04	Culvert 11.47	2799552 6346442	Visual	0	96
7-Dec-04	Culvert 11.39	2799483 6346490	Visual	0	97
7-Dec-04	Culvert 11.28	2799389 6346500	Visual	0	98
7-Dec-04	Culvert 11.24	2799354 6346520	Visual	0	99
7-Dec-04	Culvert 11.19	2799295 6346542	Visual	0	100
7-Dec-04	Culvert 11.07	2799153 6346555	Visual	0	101
7-Dec-04	Culvert 11.01	2799139 6346573	Visual	0	102
7-Dec-04	Culvert 10.90	2799033 6346600	Visual	0	103
7-Dec-04	Culvert 10.84	2798984 6346624	Visual	0	104
7-Dec-04	Culvert 10.74	2798899 6346654	Visual	0	105
7-Dec-04	Culvert 10.59	2798761 6346670	Visual	0	106
7-Dec-04	Culvert 10.55	2798723 6346689	Visual	0	107
7-Dec-04	Culvert 10.50	2798683 6346670	Visual	0	108
7-Dec-04	Culvert 10.42	2798625 6346636	Visual	0	109
7-Dec-04	Culvert 10.29	2798527 6346616	Visual	0	110
7-Dec-04	Culvert 10.22	2798521 6346615	Visual	0	111
7-Dec-04	Culvert 10.13	2798377 6346674	Visual	0	112
7-Dec-04	Culvert 10.02	2798376 6346676	Visual	0	113
7-Dec-04	Culvert 9.91	2798256 6346765	Visual	0	114
7-Dec-04	Culvert 9.84	2798254 6346770	Visual	0	115
7-Dec-04	Farm Culvert @ 961 Hamurana Rd	2797888 6346808	Visual	0	116
7-Dec-04	Stormwater Culverts @ Unsworth Rd	2797857 6346843	Visual	0	117
7-Dec-04	Culvert 9.18	2797577 6346874	Visual	0	118
7-Dec-04	Culvert 9.06	2797454 6346901	Visual	0	119
7-Dec-04	Culvert 8.80	2797207 6346955	Visual	0	120
7-Dec-04	Culvert 8.42	2796861 6347013	Visual	0	121
7-Dec-04	Culvert 8.32	2796761 6347022	Visual	0	122

Date	Site	GPS Co-ordinates	Guage Type	Discharge L/sec	Lake-edge feature number
7-Dec-04	Culvert 8.16	2796596 6346976	Visual	0	123
7-Dec-04	Culvert 8.04	2796504 6346936	Visual	0	124
7-Dec-04	Culvert 7.98	2796439 6346915	Visual	0	125
7-Nov-04	Waignaehe @ Lwr Left Branch	2799228 6337221	Meter	99.67	126
7-Dec-04	Waiohewa @ Lake Edge	2801578 6341448	Meter	364	127
7-Dec-04	Basley Rd @ Lake Front	2797518 6335884	Meter	33	128
7-Dec-04	Lynmore @ Lake front	2797113 6335257	Meter	40	129
7-Dec-04	Ohinemutu @ St Faiths		Meter	5	130
8-Dec-04	200m west of hamurana river	2796149 6346846	Visual	0	131
8-Dec-04	Culvert 250m west of toilet block	2795879 6346854	Estimation	0.016	132
8-Dec-04	Culvert 100m west of toilet block	2795895 6346868	Visual	0	133
8-Dec-04	Culvert 250m east of playground	2795715 6346851	Estimation	0.5	134
8-Dec-04		2801340 6339536	Meter	2.7	135
8-Dec-04		2801340 6339536	Meter	184.4	136
8-Dec-04		2793940 6339377	Visual	0	137
8-Dec-04		2801382 6339934	Estimation	1	138
8-Dec-04		2793655 6339602	Estimation	2.5	139
8-Dec-04		2801388 6339952	Estimation	3	140
8-Dec-04		2801403 6339989	Visual	0	141
8-Dec-04		2801459 6340031	Estimation	1	142
8-Dec-04	Culvert 5.81	2794479 6346857	Visual	0	143
8-Dec-04	Culvert 5.71	2794409 6346812	Estimation	3	144
8-Dec-04		2801474 6340037	Estimation	1	145
8-Dec-04		2801496 6340076	Estimation	4	146
8-Dec-04		2801517 6340101	Visual	0	147
8-Dec-04		2801588 6340188	Estimation	15	148
8-Dec-04	Culvert 5.61	2794077 6346759	Visual	0	149
8-Dec-04		2792911 6340446	Estimation	0.5	150
8-Dec-04		2792895 6340474	Visual	0	151
8-Dec-04		2801596 6340270	Estimation	5	152
8-Dec-04		2792813 6340593	Visual	0	153
8-Dec-04		2801671 6340462	Visual	0	154
8-Dec-04		2792677 6340901	Estimation	3	155
8-Dec-04		2792597 6341106	Visual	0	156
8-Dec-04		2792569 6341130	Estimation	0.25	157
8-Dec-04		2792543 6341170	Visual	0	158
8-Dec-04		2792522 6341223	Estimation	0.3	159
8-Dec-04		2792522 6341224	Visual	0	160
8-Dec-04		2792506 6341249	Visual	0	161
8-Dec-04		2792504 6341275	Visual	0	162
8-Dec-04		2792500 6341292	Estimation	< 0.25	163
8-Dec-04		2792476 6341437	Estimation	< 0.25	164
8-Dec-04		2792466 6341501	Estimation	0.5	165
8-Dec-04		2792460 6341642	Estimation	<0.1	166
8-Dec-04		2792468 6341914	Visual	0	167
8-Dec-04	Culvert 3.10	2792376 6345624	Estimation	0.25	168
8-Dec-04		2792343 6342284	Visual	0	169
8-Dec-04	Culvert 3.58	2792784 6345850	Estimation	1	170
8-Dec-04		2792300 6342450	Estimation	<0.25	171

Date	Site	GPS Co-ordinates	Guage Type	Discharge L/sec	Lake-edge feature number
8-Dec-04	Culvert 3.28	2792521 6345709	Estimation	0.06	172
8-Dec-04		2801807 6342320	Visual	0	173
8-Dec-04	Culvert	2792278 6342617	Estimation	2	174
8-Dec-04	Culvert	2792291 6342725	Estimation	0.5	175
8-Dec-04	Stream @ Maxwell Rd	2792703 6345024	Estimation	2	176
8-Dec-04		2795133 6336391	Estimation	0.3	177
8-Dec-04		2792322 6343059	Estimation	0.5	178
8-Dec-04		2792349 6343089	Estimation	0.25	179
8-Dec-04		2792430 6343157	Estimation	0.25	180
8-Dec-04		2792385 6343237	Estimation	0.5	181
8-Dec-04		2792388 6343242	Estimation	0.1	182
8-Dec-04		2792360 6343268	Estimation	0	183
8-Dec-04	Mokoia Rd Culvert	2792210 6343994	Meter	15	184
8-Dec-04		2792330 6343920	Estimation	0.1	185
8-Dec-04	Spring @ 89 Mokoia Rd	2792418 6344419	Estimation	0.01	186
8-Dec-04		2795343 6336187	Visual	0	187
8-Dec-04		2795168 6336359	Visual	0	188
10-Dec-04	Awahou Stm @ Mouth	2793019 6345019	Meter	1176	189
10-Dec-04	Waiteti Stm @ Mouth	2792299 6342879	Meter	1030	190
10-Dec-04	Ngongotaha @ Mouth	2792493 6341799	Meter	1372	191
10-Dec-04	Puarenga @ SH 30 Bridge		Meter	1767	192
2-Feb-05		2795406 6346818	Visual	0.005	19a
2-Feb-05			Visual	0.01	20a
2-Feb-05		2795516 6346806	Visual	0.005	20b
8-Dec-04	585 Hamurana Rd	2794275 6346776	Meter	3	17a
8-Dec-04	Ward Rd Culvert	2794780 6346905	Volumetric	0.281	18a
8-Dec-04	Culvert 6.47	2794978 6346940	Estimation	1	18c
8-Dec-04	Culvert 6.58	2795077 6347002	Volumetric	0.167	18c
8-Dec-04	Culvert 7.11	2795619 6347027	Volumetric	0.081	18d
8-Dec-04	Culvert 6.37	2795120 6346970	Meter	1	18d
2-Feb-05				0	21a
7-Dec-04	Waiteti @ TGA Direct Rd Bridge	2791550 6342880	Meter	1116	RLNBR
7-Dec-04	Awahou @ TGA Direct Rd Bridge	2792220 6345370	Meter	1530	RLNBR
7-Dec-04	Waiowhero @ Bonningtons Farm	2793540 6338800	Meter	303	RLNBR
7-Dec-04	Utuhina @ SH 5 Bridge	2794200 6336398	Meter	1749	RLNBR
7-Dec-04	Puarenga @ Hemo Gorge	2794720 6331380	Meter	1796	RLNBR
7-Dec-04	Puarenga @ F.R.I	2796120 6333320	Meter	2055	RLNBR
7-Dec-04	Hamurana St @ Hamurana Rd Bridge	2796290 6346880	Meter	2543	RLNBR
7-Dec-04	Lynmore St @ Vaughan Rd Culvert	2797470 6334840	Meter	43	RLNBR
7-Dec-04	Basley Rd @ Vaughan Rd Culvert	2797930 6335280	Meter	9	RLNBR
7-Dec-04	Waingaehe @ SH 30	2800300 6336840	Meter	216	RLNBR
7-Dec-04	Waiohewa @ SH 30	2801850 6341620	Meter	360	RLNBR